Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian statistics Tokyo.R#94
Search
kilometer
September 11, 2021
Science
5
2.4k
Bayesian statistics Tokyo.R#94
第94回Tokyo.Rでトークした際のスライド資料です。
kilometer
September 11, 2021
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
920
TokyoR109.pdf
kilometer
1
500
TokyoR#108_NestedDataHandling
kilometer
0
870
TokyoR#107_R_GeoData
kilometer
0
470
SappoRo.R_roundrobin
kilometer
0
160
TokyoR#104_DataProcessing
kilometer
1
730
TokyoR#103_DataProcessing
kilometer
0
930
TokyoR#102_RMarkdown
kilometer
1
690
TokyoR#101_RegressionAnalysis
kilometer
0
510
Other Decks in Science
See All in Science
機械学習 - 授業概要
trycycle
PRO
0
250
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
620
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
650
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
630
学術講演会中央大学学員会府中支部
tagtag
0
310
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
280
サイゼミ用因果推論
lw
1
7.5k
機械学習 - pandas入門
trycycle
PRO
0
320
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
330
Celebrate UTIG: Staff and Student Awards 2025
utig
0
240
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Cost Of JavaScript in 2023
addyosmani
53
9k
How GitHub (no longer) Works
holman
315
140k
What's in a price? How to price your products and services
michaelherold
246
12k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Building an army of robots
kneath
306
46k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Designing for Performance
lara
610
69k
Speed Design
sergeychernyshev
32
1.1k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Transcript
#94 @kilometer00 2021.09.11 BeginneR Session -- Bayesian statistics --
Who!? Who?
Who!? ・ @kilometer ・Postdoc Researcher (Ph.D. Eng.) ・Neuroscience ・Computational Behavior
・Functional brain imaging ・R: ~ 10 years
宣伝!!(書籍の翻訳に参加しました。) 絶賛販売中!
宣伝!!(筆頭論⽂が出版されました!!)
BeginneR Session
-FU`TTUBSU3 ɾ'SFF ɾ -PXJOTUBMMBUJPODPTUGPSCBTJDFOWJSPONFOU ɾ'VMMSBOHFPGGVODUJPOTGPSEBUBTDJFODF ɾ.BOZFYUFOTJPOT QBDLBHFT ɾ4USPOHDPNNVOJUZˡ QPTJUJPOUBML
-FU`TTUBSU3 ɾ'SFF ɾ -PXJOTUBMMBUJPODPTUGPSCBTJDFOWJSPONFOU ɾ'VMMSBOHFPGGVODUJPOTGPSEBUBTDJFODF ɾ.BOZFYUFOTJPOT QBDLBHFT ɾ4USPOHDPNNVOJUZˡ QPTJUJPOUBML https://tokyor.connpass.com/
-FU`TTUBSU3 ɾ'SFF ɾ -PXJOTUBMMBUJPODPTUGPSCBTJDFOWJSPONFOU ɾ'VMMSBOHFPGGVODUJPOTGPSEBUBTDJFODF ɾ.BOZFYUFOTJPOT QBDLBHFT ɾ4USPOHDPNNVOJUZˡ QPTJUJPOUBML h0ps://tokyor.connpass.com/
SXBLBMBOH TMBDLXPSLTQBDF .FNCFSਓ
3Λ࢝ΊΑ͏ 【Step】 1. Install R 2. Install RStudio
*OTUBMM3 ☝
*OTUBMM34UVEJP ౷߹։ൃڥ JOUFHSBUFEEFWFMPQNFOUFOWJSPONFOU *%& ☝
☝ *OTUBMM34UVEJP ౷߹։ൃڥ JOUFHSBUFEEFWFMPQNFOUFOWJSPONFOU *%&
)PXUPVTF34UVEJP 4DSJQUFEJUPS $POTPMF &OWJSPONFOU QMPU FUD 1 write 2 select
3 run(⌘ + ↩) output
)PXUPVTF34UVEJP
)PXUPVTF34UVEJP
> x + y
[1] 3 4DSJQUFEJUPS $POTPMFPVUQVU )PXUPVTF34UVEJP
> x +
y [1] 4 ಉ͡ม໊ʹೖ͢Δͱ্ॻ͖͞ΕΔ DPNNFOUPVU 4DSJQUFEJUPS $POTPMFPVUQVU )PXUPVTF34UVEJP
QBDLBHFT $3"/ 5IF$PNQSFIFOTJWF3"SDIJWF/FUXPSL 0GGJDJBM3QBDLBHFSFQPTJUPSZ h0ps://cran.r-project.org/ 2021.09.04
$dyverse: データサイエンス関連パッケージ群をまとめたパッケージ ・dplyr: テーブルデータの加⼯・集計 ・ggplot2:
グラフの描画 ・stringr: ⽂字列加⼯ ・$dyr: データの整形や変形 ・purrrr: 関数型プログラミング⽤ ・magri7r: パイプ演算⼦%>%を提供 *OTUBMMQBDLBHFGSPN$3"/ QBDLBHFT $3"/ 5IF$PNQSFIFOTJWF3"SDIJWF/FUXPSL 0⒏DJBM3QBDLBHFSFQPTJUPSZ https://cran.r-project.org/
0367*22(4*,1*/.6&41/6 ) $70-98.56.$' 20+5*59&4*,1*/. ) $70-98.56.$' 20+5*59&70-98.56.'###%# !" "UUBDIUIFQBDLBHF QBDLBHFT
$3"/ 5IF$PNQSFIFOTJWF3"SDIJWF/FUXPSL 0GGJDJBM3QBDLBHFSFQPTJUPSZ h0ps://cran.r-project.org/ *OTUBMMQBDLBHFGSPN$3"/
Stan A state-of-the-art platform for statistical modeling R A free
so4ware environment for sta7s7cal compu7ng and graphics. {rstan} package A pla:orm using stan from R
None
BeginneR
Before After BeginneR Session BeginneR BeginneR
BeginneR Advanced Hoxo_m If I have seen further it is
by standing on the shoulders of Giants. -- Sir Isaac Newton, 1676
#94 @kilometer00 BeginneR Session -- Bayesian statistics --
Experiment hypothesis observation principle phenotype model data Truth Knowledge f
X (unknown)
“Hypothesis driven” “Data driven” Experimental design A B Front Back
Right Left VerAcal Up A B
Strong hypothesis obs. principle phenotype f Weak hypothesis obs. principle
phenotype model Complex data f model Simple data “Hypothesis driven” “Data driven” Experimental design X X
Strong hypothesis obs. principle phenotype f X Weak hypothesis obs.
principle phenotype model Complex data f X model Simple data “Hypothesis driven” “Data driven” Experimental design ここが気になる(気になりだす)
Hypothesis ObservaEon Truth Knowledge principle phenotype model data Dice with
α faces (regular polyhedron) ! = 5 ?
Dice with α faces ! = 5 $ % =
! α = 4 = 0 $ % = ! α = 6 = 1 6 $ % = ! α = 8 = 1 8 $ % = ! α = 12 = 1 12 $ % = ! α = 20 = 1 20 likelihood maximum likelihood
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $ % = ! α = 4 = 0 $ % = ! α = 6 = 1 6!" $ % = ! α = 8 = 1 8!" $ % = ! α = 12 = 1 12!" $ % = ! α = 20 = 1 20!" likelihood maximum likelihood
Could you find α ?
Yes, yes, yes. αis 6!! Why do you think so? Because, arg max! - . α = 6 !! Hmmm......, so......, how about ? $(α = 6) Oh, it is " #!"!! ......nnNNNNO!!! WHAT!!????
Hmmm......, so, how about
? $(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood ! α = 6 % = & !!??
Probability distribution $(% = !) ! % $(% = !|α
= 6) #(% = '|α) parameter data
Probability distribution $(%) ! % arg max! -(2|α) 1 6!"
α = 6 α = 8 α = 12 $(4) α 4 -(5 = α|2 = .) ! = # α = 20
Probability distribuEon $#(%) ! % arg max! -$ (2|α) 1
6!" $$(4) α 4 -! (5 = α|2 = .) ! = # α = 6 α = 8 α = 12 α = 20
Probability distribuEon $#(%) ! % arg max! -$ (2|α) 1
6!" $$(4) α 4 -! (5 = α|2 = .) ! = # ' 5 : α → & ' 6 : & → α α = 6 α = 8 α = 12 α = 20
CondiEonal probability "($) "(&) " $ ∩ & = "(&
∩ $)
CondiEonal probability "($) "(&) "! $ ∩ & = ""
(& ∩ $)
CondiEonal probability "($) "(&) ! 7 * ∗ ! 8
, * = ! 7 *|, ∗ ! 8 ,
Bayes’ theorem ! 7 *|, = ! 8 , *
∗ ! 7 (*) ! 8 , "! $ ∩ & = "" (& ∩ $) ! 7 * ∗ ! 8 , * = ! 7 *|, ∗ ! 8 ,
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! ) = α|+ = ! = $" + = ! ) = α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α Bayes’ theorem
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! ) = α|+ = ! = $" + = ! ) = α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! α|! = $" ! α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! α|! = $" ! α ∗ $! () = α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ 4 = α|1 = $$ 4 = α|% = 9 %: 9 → ! sample space
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ 4 = α|1 = $$ 4 = α|% = 9 %: 9 → ! sample space $# % = ! = $# % = !|1 = $# % = !|4 = < 4: < → α sample space
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ 4 = α|% = 9 $# % = ! = $# % = !|4 = < = = ∀$ $# % = !|4 = α ∗ $$ 4 = α|% = 9 marginaliza7on α ∈ {4, 6, 8, 12, 20}
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood = = ∀$ $# !|α ∗ $$ α|9 marginalization α ∈ {4, 6, 8, 12, 20} $$ 4 = α = $$ α|9 $# % = ! = $# !|<
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood = = ∀$ $# !|α ∗ $$ α|9 marginaliza7on α ∈ {4, 6, 8, 12, 20} likelihood $$ 4 = α = $$ α|9 $# % = ! = $# !|<
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ α|9 $# % = ! = $# !|< = = ∀$ $# !|α ∗ $$ α|9 marginalization α ∈ {4, 6, 8, 12, 20} likelihood
$! α|! = $" ! α ∗ $! (α) $"
! ' 5 : α → & ' 6 : & → α likelihood = $" ! α ∗ $! (α|-) Σ∀! $" !|α ∗ $! α|-
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $ % = ! α = 4 = 0 $ % = ! α = 6 = 1 6!" $ % = ! α = 8 = 1 8!" $ % = ! α = 12 = 1 12!" $ % = ! α = 20 = 1 20!" likelihood
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -)
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -) %: 9 → ! 9 : sample space of data ! (20!"= 1,024,000,000,000 pa+ern)
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -) %: 9 → ! 9 : sample space of data ! (20$%= 1,024,000,000,000 paHern)
None
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -) + ≅ +′ approximation $! ) = ∀α + = -& = 1 5 α ∈ {4, 6, 8, 12, 20}
$! α|! ≅ $" ! α ∗ $! (α|-′) Σ∀!
$" !|α ∗ $! α|-′ ' 5 : α → & ' 6 : & → α likelihood = -$ . α Σ∀! -$ .|α = -$ . α -$ . 4 + -$ . 6 + -$ . 8 + -$ . 12 + -$ . 20 ≈ -$ . α 1.7485A − 08 &! ∀α (" = 1 5
Hmmm......, so, how many ?
$(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood $$ 4 = 6|! ≅ $# % = ! 4 = 6 1.7485C − 08 ≈ 94.58%
$$ 6|! ≈ 94.58% $$ 6|9′ = 20% $$ 8|!
≈ 5.32% $$ 8|9′ = 20% $$ 12|! ≈ 0.09% $$ 12|9′ = 20% $$ 20|! ≈ 0.0005% $$ 20|9′ = 20% $$ 4|! = 0% $$ 4|9′ = 20% prior probability posterior probability Maximum a posteriori (MAP) estimation arg max! $! α ! = 6
Hmmm......, so, how many ?
$(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood $$ 4 = 6|! ≈ 94.58% maximum posteriori prob.
Hmmm......, so, how about ?
$(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood $$ 4 = 6|! ≈ 94.58% maximum posteriori prob. Could you predict & II?
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $# !!! ≤ 6|4 ∗ $$ 4|! = 0% $# !!! ≤ 6|6 ∗ $$ 6|! ≈ 94.58% $# !!! ≤ 6|8 ∗ $$ 8|! ≈ 3.99% $# !!! ≤ 6|12 ∗ $$ 12|! ≈ 0.046% $# !!! ≤ 6|20 ∗ $$ 20|! ≈ 0.0001% $# !!! ≤ 6 = = ∀$ {$# !!! ≤ 6|α ∗ $$ α|! } ≈ 98.62% predic$ve probability
Could you predict & II?
$ ) = 6 ! ≈ 94.58% $ !$$ ≤ 6 ! ≈ 98.62% and Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4}
Could you predict & II?
$ ) = 6 ! ≈ 94.58% $ !$$ ≤ 6 ! ≈ 98.62% and Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} OK, let’s try !!!!!
!!! = 8 Dice with
α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4}
$ ) = 6 !
≈ 94.58% $ !$$ ≤ 6 ! ≈ 98.62% Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} OK, let’s try "!!!! !)) = 8 " $ = 6 {,, ,## } = 0%
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|4′′) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|4′′) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|,) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} ́ ! = {!, 8} Non-informa$ve prior distribu$on 20% 20% 20% 20% 20% 0% 94.58% 5.32% 0.09% 0.005% 0% 0% 99.98% 0.02% 0.000004% -! (α|C′) -! (α|.) -! (α| ́ .)
$ ) = 8 ́
! ≈ 99.98% $ !$' ≤ 8 ́ ! ≈ 99.98% Dice with α faces ́ ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4, 8} OK!! Let’s try !!"!! COME OOON
No one knows what happened to them......
Hypothesis ObservaEon Truth Knowledge principle phenotype model data Dice with
α faces (regular polyhedron) ! = 5 ?
Hmmm......, so, how about
? $(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood ! α = 6 % = & !!??
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! ) = α|+ = ! = $" + = ! ) = α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
$! α|! ≅ $" ! α ∗ $! (α|-′) Σ∀!
$" !|α ∗ $! α|-′ ' 5 : α → & ' 6 : & → α likelihood = -$ . α Σ∀! -$ .|α = -$ . α -$ . 4 + -$ . 6 + -$ . 8 + -$ . 12 + -$ . 20 ≈ -$ . α 1.7485A − 08 &! ∀α (" = 1 5
$$ 6|! ≈ 94.58% $$ 6|9′ = 20% $$ 8|!
≈ 5.32% $$ 8|9′ = 20% $$ 12|! ≈ 0.09% $$ 12|9′ = 20% $$ 20|! ≈ 0.0005% $$ 20|9′ = 20% $$ 4|! = 0% $$ 4|9′ = 20% prior probability posterior probability Maximum a posteriori probability (MAP) estimation arg max! $! α ! = 6
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $# !!! ≤ 6|4 ∗ $$ 4|! = 0% $# !!! ≤ 6|6 ∗ $$ 6|! ≈ 94.58% $# !!! ≤ 6|8 ∗ $$ 8|! ≈ 3.99% $# !!! ≤ 6|12 ∗ $$ 12|! ≈ 0.046% $# !!! ≤ 6|20 ∗ $$ 20|! ≈ 0.0001% $# !!! ≤ 6 = = ∀$ {$# !!! ≤ 6|α ∗ $$ α|! } ≈ 98.62% predic$ve probability
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|4′′) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
Experiment hypothesis observa$on principle phenotype model data Truth Knowledge f
X (unknown)
Strong hypothesis obs. principle phenotype f Weak hypothesis obs. principle
phenotype model Complex data f model Simple data “Hypothesis driven” “Data driven” Experimental design X X
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribution posterior distribuBon data predictive distribution $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribution posterior distribuBon data predictive distribution $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem Truth
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribuBon posterior distribuBon data predicBve distribuBon $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem #(%|') .(%) Truth L&'(M| $ Kullback-Leibler divergence
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribuBon posterior distribuBon data predicBve distribuBon $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem #(%|') .(%) Truth L&'(M| $ = −N( + P KL divergence Entropy Generalization error
/!" (.| # = Q[S $ − S(M)] = Q[(−log
$ ) − (−log M )] = Q log ( ) = ∫ M % ∗ log ((#) )(,|#) Y% = ∫ M % ∗ log M(!) Y% − ∫ M % ∗ log $ % ! Y% = −Q S M − ∫ M % ∗ log $ % ! Y% B( C Entropy Generaliza$on error
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribuBon posterior distribution data predictive distribution $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem #(%|') .(%) Truth L&'(M| $ = −N( + P KL divergence Entropy GeneralizaBon error arg min) L&'(M| $ ⟺ arg min) P P ≅ WAIC Watanabe Akaike InformaAon Criterion
Experiment hypothesis observa$on principle phenotype model data Truth Knowledge f
X (unknown)
Anaïs Nin – “Life shrinks or expands in proporRon to
one’s courage.” h0ps://images.gr-assets.com
Before ABer BeginneR Session BeginneR BeginneR
Enjoy!!