Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20分で大体わかる! AWS Glue Data Qualityによる データ品質検査
Search
Niino
January 31, 2024
Technology
0
7.2k
20分で大体わかる! AWS Glue Data Qualityによる データ品質検査
Niino
January 31, 2024
Tweet
Share
More Decks by Niino
See All by Niino
祝!Iceberg祭開幕!re:Invent 2024データレイク関連アップデート10分総ざらい
kniino
3
260
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
160
Iceberg で Amazon Athena をデータウェアハウスぽく使おう
kniino
0
4.6k
〜小さく始めて大きく育てる〜データ分析基盤の開発から活用まで
kniino
0
2.8k
ダッシュボードもコード管理!Amazon QuickSightで考えるBIOps
kniino
0
2.2k
Other Decks in Technology
See All in Technology
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
150
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.2k
サイボウズフロントエンドエキスパートチームについて / FrontendExpert Team
cybozuinsideout
PRO
5
38k
5分でわかるDuckDB
chanyou0311
10
3.2k
終了の危機にあった15年続くWebサービスを全力で存続させる - phpcon2024
yositosi
3
4.5k
re:Invent 2024 Innovation Talks(NET201)で語られた大切なこと
shotashiratori
0
310
権威ドキュメントで振り返る2024 #年忘れセキュリティ2024
hirotomotaguchi
2
740
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
530
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
530
マルチプロダクト開発の現場でAWS Security Hubを1年以上運用して得た教訓
muziyoshiz
2
2.3k
どちらを使う?GitHub or Azure DevOps Ver. 24H2
kkamegawa
0
730
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
410
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Rails Girls Zürich Keynote
gr2m
94
13k
Speed Design
sergeychernyshev
25
670
The Cost Of JavaScript in 2023
addyosmani
45
7k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Practical Orchestrator
shlominoach
186
10k
Designing for humans not robots
tammielis
250
25k
Transcript
20分で大体わかる! AWS Glue Data Qualityによる データ品質検査 クラスメソッド株式会社 niino
⾃⼰紹介 niino • データアナリティクス事業本部 インテグレーション部 コンサルティングチーム ◦ ソリューションアーキテクト ◦ 2023
Japan AWS Top Engineer(Analytics) • データ分析基盤に関するコンサルティング • 最近の高い買い物:ベース • 奈良県出身 大阪オフィス所属 この辺の出身
本題 データ分析においてデータの品質は重要! データパイプラインが エラーになった… 分析結果が 間違ってる…
とはいえ、データ品質検査にもいろんな課題が データが大量だし 形式も様々で 品質チェックの 実行も一苦労 品質検査にはどの ツールを 使うべき? データの変動を 把握したい
AWS Glueの新たな機能、 AWS Glue Data Quality
AWS Glueとは AWSが提供するサーバーレスなデータ統合サービス • PythonとApache Sparkを使った大量データの処理(Glue ETL Job) • データ資産のカタログ化(Glue
Data Catalog) • GUIでのジョブ作成(Glue Visual Editor/Glue Data Brew) などの様々な機能が提供 Crawler Data Catalog S3 Bucket Amazon Athena Amazon QuickSight Amazon Redshift ETL Job データソース
AWS Glueとは AWSが提供するサーバーレスなデータ統合サービス • PythonとApache Sparkを使った大量データの処理(Glue ETL Job) • データ資産のカタログ化(Glue
Data Catalog) • GUIでのジョブ作成(Glue Visual Editor/Glue Data Brew) などの様々な機能が提供 Crawler Data Catalog S3 Bucket Amazon Athena Amazon QuickSight Amazon Redshift ETL Job データソース 2023年6月、データ品質検査を担う Glue Data Qualityが一般提供開始
AWS Glue Data Qualityとは • ユーザーが定義したルール に従って、 データの品質検査を実施で きる機能 •
AWSが開発したOSSである Deequを利用 • ルールの定義にはDQDL (Data Quality Definition Language)を 利用
Data Qualityの基本的な使い方 ①ルールを定義 ルールタイプを 選択 ルールを定義 自動でルール をリコメンド
Data Qualityの基本的な使い方 ②実行
Data Qualityで利用可能なルール 2024/1現在、27種類 AggregateMatch ColumnCorrelation ColumnCount ColumnDataType ColumnExists ColumnLength ColumnNamesMatchPattern
ColumnValues Completeness CustomSql DataFreshness DatasetMatch DetectAnomalies DistinctValuesCount Entropy IsComplete IsPrimaryKey IsUnique Mean ReferentialIntegrity RowCount RowCountMatch SchemaMatch StandardDeviation Sum UniqueValueRatio Uniqueness
Data Qualityの便利なところ • DQDLを使って簡単にデータ品質検査のルールを定義可能 • CloudWatchやSNSを組み合わせることで通知可能 • 既存データを自動で分析して最適なルールを レコメンド •
Glue Job同様、ワーカーを増やしてスケールアップが 可能 • 静的なルールに合致しないデータを検出するだけでなく、 意図しない変化や異常を自動的に検出可能(プレビュー 機能)
Data Qualityの利用パターン Glue Data Catalog • Glue Data Catalogに登録されたテー ブルに対してデータ品質検査ルールを
定義して実行 • 取り込み後データのチェックに便利 • Glue ETL Jobを使っておらず、 Athenaを利用している場合でも使える Glue ETL Job • Glue ETL Jobの中に組み込む形でデー タ品質検査ルールを定義 • 取り込み前のデータのチェックに便利 • すでにGlue ETL Jobを使っている 場合、既存の処理に組み込める • GlueコネクタがサポートするAWS以外 のデータソースの品質検査も可能
実際の操作はこんな感じ
None
ユースケースいろいろ
ユースケースその1 テーブルへ投入する前の データファイルの品質を チェック • Glue ETL Jobの中で Data Qualityを利用
• データの異常を検知した ら通知 • ルールに沿っていれば データレイクへ投入
ユースケースその3 データの変化を把握する • 2023年11月に発表されたプレビュー機能 • 過去のデータと比較して変化を検知 • 異常を検知するだけでなく、データの傾向の変化を把握できる
ユースケースその3 データの変化を把握する • 2023年11月に発表されたプレビュー機能 • 過去のデータと比較して変化を検知 • 異常を検知するだけでなく、データの傾向の変化を把握できる
まとめ
まとめ • AWS Glue Data Qualityを使って、サーバーレスで AWSマネージドという取り組みやすい環境で データ品質検査ができる • 他AWSサービスと組み合わせて異常検知の際の通知
も可能 • データの変化の傾向把握にも使える
None