Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
確率的データ構造を Java で扱いたい! #JJUG
Search
KOMIYA Atsushi
August 23, 2017
Programming
6
2.3k
確率的データ構造を Java で扱いたい! #JJUG
JJUG ナイト・セミナー 「ビール片手にLT&納涼会 2017」 の発表資料です。
https://jjug.doorkeeper.jp/events/63719
KOMIYA Atsushi
August 23, 2017
Tweet
Share
More Decks by KOMIYA Atsushi
See All by KOMIYA Atsushi
#JJUG Java における乱数生成器とのつき合い方
komiya_atsushi
5
5.4k
#JJUG Fork/Join フレームワークを効率的に正しく使いたい
komiya_atsushi
0
510
[#JSUG] SmartNews における container friendly な Spring Boot アプリケーション開発
komiya_atsushi
1
11k
Java のデータ圧縮ライブラリを極める #jjug_ccc #ccc_c7
komiya_atsushi
4
5k
#devsumi 自然言語処理・機械学習によるファクトチェック業務の支援
komiya_atsushi
1
4.5k
SmartNews Ads における機械学習の活用とその運用 #mlops
komiya_atsushi
3
19k
GBDT によるクリック率予測を高速化したい #オレシカナイト vol.4
komiya_atsushi
5
1.3k
Maven central repository の artifact をランキングする #渋谷java
komiya_atsushi
0
1.4k
High-performance Jackson #渋谷Java
komiya_atsushi
2
17k
Other Decks in Programming
See All in Programming
TypeScriptでDXを上げろ! Hono編
yusukebe
3
870
SwiftでMCPサーバーを作ろう!
giginet
PRO
2
210
AI コーディングエージェントの時代へ:JetBrains が描く開発の未来
masaruhr
2
220
レトロゲームから学ぶ通信技術の歴史
kimkim0106
0
140
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
0
530
Claude Code派?Gemini CLI派? みんなで比較LT会!_20250716
junholee
1
740
PHPUnitの限界をPlaywrightで補完するテストアプローチ
yuzneri
0
340
Jakarta EE Meets AI
ivargrimstad
0
370
マッチングアプリにおけるフリックUIで苦労したこと
yuheiito
0
240
バイブコーディング超えてバイブデプロイ〜CloudflareMCPで実現する、未来のアプリケーションデリバリー〜
azukiazusa1
2
730
変化を楽しむエンジニアリング ~ いままでとこれから ~
murajun1978
0
520
中級グラフィックス入門~効率的なメッシュレット描画~
projectasura
3
1.7k
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
KATA
mclloyd
30
14k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
RailsConf 2023
tenderlove
30
1.2k
Producing Creativity
orderedlist
PRO
346
40k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Thoughts on Productivity
jonyablonski
69
4.8k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Designing for humans not robots
tammielis
253
25k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
֬తσʔλߏΛ Java Ͱѻ͍͍ͨʂ 2017-08-23 JJUG night seminar LT KOMIYA Atsushi
@komiya_atsushi
Today’s topic
֬తσʔλߏ
֬తσʔλߏͱʁ • ֬తಛੑΛར༻ͨ͠σʔλߏ • ͋ΔΛɺ࣌ؒతۭؒ͘͠తʹޮΑ͘ (≅লϝϞϦͰ) ղ͘͜ͱΛతͱ͢Δ • ࠓճʮۭؒޮͷΑ͍σʔλߏʯʹண •
σʔλߏʹΑͬͯɺݫີղͰͳۙ͘ࣅղ ͕ಘΒΕΔ͜ͱ͕͋Δ • ਫ਼ͱۭؒޮτϨʔυΦϑͷؔ
ͲΜͳͱ͖ʹ͏ͷ͔ʁ
ͲΜͳͱ͖ʹ͏ͷ͔ʁ • ϦΞϧλΠϜ͔ͭେྔʹൃੜ͢ΔσʔλΛ ΦϯϥΠϯͰॲཧ͍ͨ͠ • ϝϞϦʹऩ·Γ͖Βͳ͍େنͳσʔλΛ ඇྗͳ PC Ͱॲཧ͍ͨ͠ •
ࢄॲཧͰ͖Δڥ͕͋ΔͳΒɺ͋͑ͯ ֬తσʔλߏΛ͏ඞཁͳ͍
Java Ͱ ֬తσʔλߏΛѻ͏
ࣗલ࣮ʁ ϥΠϒϥϦ͏ʁ • ଟ͘ͷ֬తσʔλߏɺͦͷจ͕͙͙ ΕӾཡՄೳͳঢ়ଶͰ͙͢ʹݟ͔ͭΔ • ͦΕΛಡΜͰࣗલ࣮͢ΔͷΑ͠ • ҰํͰ Maven
central ʹ͍ͭ͘ͷطଘ࣮ ͕ଘࡏ͍ͯ͠Δ • ڊਓͷݞͷ্ʹཱͭͷ͕ݡ͍Γํ
֬తσʔλߏͷ Java ࣮ • stream-lib ‘com.addthis:stream-lib’ • Membership query /
cardinality estimation / frequency counting / quantile estimation • Google Guava ‘com.google.guava:guava’ • Membership query • java-hll ‘net.agkn:hll’ • Cardinality estimation • t-digest ‘com.tdunning:t-digest’ • Quantile estimation
֬తσʔλߏͷ Java ࣮ • stream-lib ‘com.addthis:stream-lib’ • Membership query /
cardinality estimation / frequency counting / quantile estimation • Google Guava ‘com.google.guava:guava’ • Membership query • java-hll ‘net.agkn:hll’ • Cardinality estimation • t-digest ‘com.tdunning:t-digest’ • Quantile estimation
stream-lib ʹΑΔ ֬తσʔλߏͷར༻ํ๏
http://bit.ly/JJUG-2017-08- probds-code
Membership query
ཁૉ͕ू߹ʹଐ͢Δ͔൱͔Λఆ͢Δ
ཁૉ͕ू߹ʹଐ͢Δ͔൱͔Λఆ͢Δ Set<T> Λ༻ҙͯ͠ Set#contains(T) Ͱଘ൱Λఆ͠ Set#add(T) Ͱू߹ʹཁૉΛՃ͢Δ
Bloom filter • ֬తʹؒҧͬͨ͑ʢଘ൱݁ՌʣΛฦ͢ • ِཅੑ (ଘࡏ͠ͳ͍ͷΛଘࡏ͢Δͱޡೝ͢ Δࣄ) ੜ͡Δ͕ɺِӄੑੜ͡ͳ͍ •
ʮఆ͞ΕΔཁૉͷछྨʯʮڐ༰Ͱ͖Δِ ཅੑͷ֬ʯΛࢦఆͯ͠ɺώʔϓ༻ྔΛ੍ޚ Ͱ͖Δ • ཁૉͷՃͰ͖Δ͕ɺআ͍͠
stream-lib ͷ Bloom filter
stream-lib ͷ Bloom filter ཁૉͱِཅੑ֬Λࢦఆͯ͠ BloomFilter Λ༻ҙ͠ BloomFilter#isPresent(String) Ͱଘ൱Λఆ Set
ͱಉ༷ʹ add() ͢Δ
ώʔϓ༻ྔΛ֬ೝͯ͠ΈΔ • “Lorem ipsum” ͷςΩετΛྫʹɺJOL (Java Object Layout) Ͱώʔϓ༻ྔΛଌఆ •
http://openjdk.java.net/projects/code- tools/jol/ • Set: 6,032 bytes • stream-lib BloomFilter: 136 bytes 97.8% smaller !
Cardinality estimation
ҟͳΓΛٻΊΔ
ҟͳΓΛٻΊΔ Set<T> Λ༻ҙ͠ɺ Set#add() Ͱͻͨ͢ΒಥͬࠐΉ Set#size() ͰҟͳΓ͕ಘΒΕΔ
HyperLogLog++ (1/2) • ҟͳΓΛਪఆ͢Δσʔλߏ • ಘΒΕΔਪఆɺຊདྷͷҟͳΓʹର্ͯ͠ৼΕɾԼৼ Εͱʹى͜Γ͏Δ • Redshift /
BigQuery / Presto ͳͲͰɺCOUNT(DISTINCT x) Λۙࣅ͢Δखஈͱͯ͠ΘΕ͍ͯΔ • https://aws.amazon.com/jp/about-aws/whats-new/ 2013/11/11/amazon-redshift-new-performance-data- loading-security-features/ • https://cloud.google.com/blog/big-data/2017/07/ counting-uniques-faster-in-bigquery-with-hyperloglog
HyperLogLog++ (2/2) • ʮਪఆͷਫ਼ pʯΛௐ͢Δ͜ͱͰɺώʔϓ༻ྔΛ੍ ޚ͢Δ͜ͱ͕Ͱ͖Δ • Λେ͖͘͢Δͱਫ਼͕ߴ͘ͳΔ & ۭؒޮѱԽ͢Δ
• ఆ͞ΕΔҟͳΓඞཁͱ͞ΕΔਫ਼ɺώʔϓͷ੍ Λߟྀͯ͠ p Λܾఆ͢Δ • HyperLogLog ͷΈΛཧղ͢ΔʹɺҎԼͷϒϩάΤϯ τϦ͕͓͢͢Ί • http://blog.brainpad.co.jp/entry/2016/06/27/110000
stream-lib ͷ HyperLogLog++
stream-lib ͷ HyperLogLog++ ਫ਼Λࢦఆͯ͠ HyperLogLogPlus() Λ༻ҙ͢Δ HyperLogLogPlus#offer() ͰཁૉΛՃ͍ͯ͘͠ HyperLogLogPlus#cardinality() ͰҟͳΓ͕ಘΒΕΔ
Frequency counting
ཁૉͷසΛ্͑͛Δ
ཁૉͷසΛ্͑͛Δ Map Ͱཁૉ͝ͱͷΧϯλΛදݱ͢Δ ͻͨ͢Βཁૉ͝ͱʹ্͑͛Δ
Count-min sketch (1/2) • ཁૉͷසΛਪఆ͢ΔσʔλߏͷҰͭ • ࣮ࡍͷසΑΓେ͖͍ਪఆΛฦ͢͜ͱ͕ ͋ΔҰํͰɺখ͍͞ਪఆΛฦ͢͜ͱͳ͍ • ස͕খ͍͞ཁૉ΄Ͳɺ͜ͷόΠΞεͷӨ
ڹΛड͚͘͢ͳΔ
Count-min sketch (2/2) • width ͱ depth ͷೋͭͷύϥϝʔλͰɺۭؒ ޮਫ਼Λ੍ޚ͢Δ •
width * depth ͷݸͷΧϯλ͕࡞ΒΕΔ • Χϯλ 2࣍ݩྻͰදݱ • depth ͷ͚ͩϋογϡ͕࣮ؔߦ͞ΕΔͷ ͰɺతͳύϑΥʔϚϯεʹӨڹΛ༩͑Δ
stream-lib ͷ Count-min sketch
stream-lib ͷ Count-min sketch width:10 * depth:30 ͷΧϯλʹΑΔ Count-Min sketch
Λ༻ҙ͢Δ CountMinSketch#add(String, int) ͰΧϯτ͍ͯ͘͠
Quantile estimation
ύʔηϯλΠϧΛٻΊΔ
ύʔηϯλΠϧΛٻΊΔ ιʔτ͞Εͨঢ়ଶͰྻԽ͢Δ ͋ͱ n ύʔηϯλΠϧΛࢀর͢Δ͚ͩ
t-digest • ྻͷҐΛਪఆ͢Δσʔλߏ • ܦݧΛۙࣅతʹදݱ͢Δ • ύʔηϯλΠϧɺ͜ͷܦݧͷۙࣅදݱ͔Βૠ Λ༻͍ͯࢉग़͞ΕΔ • ʮѹॖύϥϝʔλʯʹΑͬͯɺਫ਼ͱۭؒޮͷτϨʔυ
ΦϑΛௐ͢Δ • Λେ͖͘͢Δ͜ͱͰɺਫ਼ΛߴΊΔ͜ͱ͕Ͱ͖Δ
stream-lib ͷ t-digest
stream-lib ͷ t-digest ѹॖύϥϝʔλΛࢦఆͯ͠ TDigest Λ༻ҙ͢Δ TDigest#add(double) ͰΛՃ͍ͯ͘͠ TDigest#quantile(double) ͰύʔηϯλΠϧΛಘΔ
·ͱΊ
·ͱΊ • ֬తσʔλߏΛ༻͍Δ͜ͱͰɺେنσʔλॲཧ ΦϯϥΠϯॲཧΛޮతʹ࣮ݱͰ͖Δʢ͔ʣ • Java Ͱ֬తσʔλߏΛ͓खܰʹѻ͍͍ͨͳΒɺ ·ͣstream-lib ͷར༻Λݕ౼ͯ͠ΈΔ •
ਪఆਫ਼ͱۭؒޮͷτϨʔυΦϑΛ੍ޚ͢Δ ύϥϝʔλͷௐɺ৬ਓܳʹͳΓ͕ͪ • JOL JMH Λ༻͍ͯɺ࣮ࡍͷۭؒޮͱ࣌ؒޮΛ ͖ͪΜͱଌఆ͠ͳ͕Βௐ͢Δ͜ͱΛ͓͢͢Ί͍ͨ͠
Thank you!