Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning - Ignite & Build Update ...
Search
konabuta
June 03, 2021
Technology
0
930
Azure Machine Learning - Ignite & Build Update (20210603)
Azure Machine Learning Ignite & Build Update
https://dllab.connpass.com/event/213776/
konabuta
June 03, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
220
Azure Machine Learning 大規模機械学習
konabuta
0
340
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.4k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
410
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.2k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
520
Other Decks in Technology
See All in Technology
kubellが挑むBPaaSにおける、人とAIエージェントによるサービス開発の最前線と技術展望
kubell_hr
0
150
20250612_GitHubを使いこなすためにソニーの開発現場が取り組んでいるプラクティス.pdf
osakiy8
1
550
Eight Engineering Unit 紹介資料
sansan33
PRO
0
3.4k
Cloud Native Scalability for Internal Developer Platforms
hhiroshell
2
240
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
770
「伝える」を加速させるCursor術
naomix
0
570
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
1
110
dbt Cloudの新機能を紹介!データエンジニアリングの民主化:GUIで操作、SQLで管理する新時代のdbt Cloud
sagara
0
180
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
38k
ハッカー視点で学ぶサイバー攻撃と防御の基本
nomizone
3
1.4k
AIにどこまで任せる?実務で使える(かもしれない)AIエージェント設計の考え方
har1101
1
260
Tensix Core アーキテクチャ解説
tenstorrent_japan
0
340
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
134
9.3k
Making Projects Easy
brettharned
116
6.2k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Practical Orchestrator
shlominoach
188
11k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Bash Introduction
62gerente
614
210k
How to train your dragon (web standard)
notwaldorf
92
6.1k
Side Projects
sachag
454
42k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Raft: Consensus for Rubyists
vanstee
138
7k
Transcript
Azure Machine Learning Ignite & Build アップデート 女部田啓太
アジェンダ
アジェンダ
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
アジェンダ
最新アップデート情報
Microsoft が PyTorch の Enterprise サポートを提供 PyTorch Enterprise | PyTorch
Delivering reliable production experiences with PyTorch Enterprise on Microsoft Azure - Microsoft Open Source Blog
Compute Instance が Visual Studio Code に対応
コンピューティング インスタンスを作成および管理する - Azure Machine Learning | Microsoft Docs Compute
Instance のカスタム構成
デモンストレーション
None
マネージド オンライン エンドポイントを使用して ML モデルをデプロイする - Azure Machine Learning |
Microsoft Docs Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなオンライン推論環境
バッチ エンドポイントを使用したバッチ スコアリング - Azure Machine Learning | Microsoft Docs
Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなバッチ推論環境
CLI & REST API のエンハンスメント 2.0 CLI を使用してモデルをトレーニングする (ジョブを作成する) -
Azure Machine Learning | Microsoft Docs Announcing the new CLI and ARM REST APIs for Azure Machine Learning - Microsoft Tech Community
デモンストレーション
None
None
MLFlow Integration Experiments Local machine Virtual machine Azure ML Compute
Azure Databricks ML Tracking and Model Deployment Azure Machine Learning Experiments and Metrics Tracking Metrics Artifacts Logging API Tracking URI Model API 実験メトリックとモデル管理の連携
集計されたモデル精度指標では捉えられないモデル誤差の傾向分析 ① Identification ② Diagnostics 誤差が大きいコホートを特定する 木構造で各条件下におけるエラー率・カバレッジを表示 対象のコホートを比較し深掘り分析する データ探索 グローバル解釈
ローカル解釈 what-if 分析 Learn More : Error Analysis
ラベリング機能のインスタンスセグメンテーションへの対応 画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs
画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs テキストデータ用のラベリング機能
アジェンダ
基礎編 2021年6月11日(金) 16:00 - 17:30 https://dllab.connpass.com/event/211482/
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
None
None