Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning - Ignite & Build Update ...
Search
konabuta
June 03, 2021
Technology
0
980
Azure Machine Learning - Ignite & Build Update (20210603)
Azure Machine Learning Ignite & Build Update
https://dllab.connpass.com/event/213776/
konabuta
June 03, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
250
Azure Machine Learning 大規模機械学習
konabuta
0
390
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.6k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.2k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
440
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2.2k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.2k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
580
Other Decks in Technology
See All in Technology
スクラムを一度諦めたチームにアジャイルコーチが入ってどう変化したか / A Team's Second Try at Scrum with an Agile Coach
kaonavi
0
240
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
40
19k
First-Principles-of-Scrum
hiranabe
4
2.1k
Kaggleコンペティション「MABe Challenge - Social Action Recognition in Mice」振り返り
yu4u
1
310
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
yoshimi0227
1
200
【Agentforce Hackathon Tokyo 2025 発表資料】みらいシフト:あなた働き方を、みらいへシフト。
kuratani
0
120
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
6
1.4k
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
7
3.3k
これまでのネットワーク運用を変えるかもしれないアプデをおさらい
hatahata021
2
130
さくらのクラウドでのシークレット管理を考える/tamachi.sre#2
fujiwara3
1
150
Data Intelligence on Lakehouse Paradigm
scotthsieh825
0
100
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
110
Featured
See All Featured
Six Lessons from altMBA
skipperchong
29
4.1k
Code Reviewing Like a Champion
maltzj
527
40k
Amusing Abliteration
ianozsvald
0
86
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
98
A designer walks into a library…
pauljervisheath
210
24k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Transcript
Azure Machine Learning Ignite & Build アップデート 女部田啓太
アジェンダ
アジェンダ
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
アジェンダ
最新アップデート情報
Microsoft が PyTorch の Enterprise サポートを提供 PyTorch Enterprise | PyTorch
Delivering reliable production experiences with PyTorch Enterprise on Microsoft Azure - Microsoft Open Source Blog
Compute Instance が Visual Studio Code に対応
コンピューティング インスタンスを作成および管理する - Azure Machine Learning | Microsoft Docs Compute
Instance のカスタム構成
デモンストレーション
None
マネージド オンライン エンドポイントを使用して ML モデルをデプロイする - Azure Machine Learning |
Microsoft Docs Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなオンライン推論環境
バッチ エンドポイントを使用したバッチ スコアリング - Azure Machine Learning | Microsoft Docs
Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなバッチ推論環境
CLI & REST API のエンハンスメント 2.0 CLI を使用してモデルをトレーニングする (ジョブを作成する) -
Azure Machine Learning | Microsoft Docs Announcing the new CLI and ARM REST APIs for Azure Machine Learning - Microsoft Tech Community
デモンストレーション
None
None
MLFlow Integration Experiments Local machine Virtual machine Azure ML Compute
Azure Databricks ML Tracking and Model Deployment Azure Machine Learning Experiments and Metrics Tracking Metrics Artifacts Logging API Tracking URI Model API 実験メトリックとモデル管理の連携
集計されたモデル精度指標では捉えられないモデル誤差の傾向分析 ① Identification ② Diagnostics 誤差が大きいコホートを特定する 木構造で各条件下におけるエラー率・カバレッジを表示 対象のコホートを比較し深掘り分析する データ探索 グローバル解釈
ローカル解釈 what-if 分析 Learn More : Error Analysis
ラベリング機能のインスタンスセグメンテーションへの対応 画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs
画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs テキストデータ用のラベリング機能
アジェンダ
基礎編 2021年6月11日(金) 16:00 - 17:30 https://dllab.connpass.com/event/211482/
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
None
None