Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning - Ignite & Build Update ...
Search
konabuta
June 03, 2021
Technology
0
950
Azure Machine Learning - Ignite & Build Update (20210603)
Azure Machine Learning Ignite & Build Update
https://dllab.connpass.com/event/213776/
konabuta
June 03, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
230
Azure Machine Learning 大規模機械学習
konabuta
0
360
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.5k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
410
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2.1k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.2k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
550
Other Decks in Technology
See All in Technology
開発 × 生成AI × コミュニケーション:GENDAの開発現場で感じたコミュニケーションの変化 / GENDA Tech Talk #1
genda
0
230
「Roblox」の開発環境とその効率化 ~DAU9700万人超の巨大プラットフォームの開発 事始め~
keitatanji
0
130
Claude Codeから我々が学ぶべきこと
oikon48
10
2.8k
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
2.4k
2時間で300+テーブルをデータ基盤に連携するためのAI活用 / FukuokaDataEngineer
sansan_randd
0
160
薬屋のひとりごとにみるトラブルシューティング
tomokusaba
0
360
生成AIによるデータサイエンスの変革
taka_aki
0
3k
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
580
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
840
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
730
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
200
20250807_Kiroと私の反省会
riz3f7
0
230
Featured
See All Featured
Being A Developer After 40
akosma
90
590k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
What's in a price? How to price your products and services
michaelherold
246
12k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Building a Scalable Design System with Sketch
lauravandoore
462
33k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Pragmatic Product Professional
lauravandoore
36
6.8k
How to train your dragon (web standard)
notwaldorf
96
6.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Transcript
Azure Machine Learning Ignite & Build アップデート 女部田啓太
アジェンダ
アジェンダ
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
アジェンダ
最新アップデート情報
Microsoft が PyTorch の Enterprise サポートを提供 PyTorch Enterprise | PyTorch
Delivering reliable production experiences with PyTorch Enterprise on Microsoft Azure - Microsoft Open Source Blog
Compute Instance が Visual Studio Code に対応
コンピューティング インスタンスを作成および管理する - Azure Machine Learning | Microsoft Docs Compute
Instance のカスタム構成
デモンストレーション
None
マネージド オンライン エンドポイントを使用して ML モデルをデプロイする - Azure Machine Learning |
Microsoft Docs Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなオンライン推論環境
バッチ エンドポイントを使用したバッチ スコアリング - Azure Machine Learning | Microsoft Docs
Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなバッチ推論環境
CLI & REST API のエンハンスメント 2.0 CLI を使用してモデルをトレーニングする (ジョブを作成する) -
Azure Machine Learning | Microsoft Docs Announcing the new CLI and ARM REST APIs for Azure Machine Learning - Microsoft Tech Community
デモンストレーション
None
None
MLFlow Integration Experiments Local machine Virtual machine Azure ML Compute
Azure Databricks ML Tracking and Model Deployment Azure Machine Learning Experiments and Metrics Tracking Metrics Artifacts Logging API Tracking URI Model API 実験メトリックとモデル管理の連携
集計されたモデル精度指標では捉えられないモデル誤差の傾向分析 ① Identification ② Diagnostics 誤差が大きいコホートを特定する 木構造で各条件下におけるエラー率・カバレッジを表示 対象のコホートを比較し深掘り分析する データ探索 グローバル解釈
ローカル解釈 what-if 分析 Learn More : Error Analysis
ラベリング機能のインスタンスセグメンテーションへの対応 画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs
画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs テキストデータ用のラベリング機能
アジェンダ
基礎編 2021年6月11日(金) 16:00 - 17:30 https://dllab.connpass.com/event/211482/
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
None
None