Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning - Ignite & Build Update ...
Search
konabuta
June 03, 2021
Technology
0
880
Azure Machine Learning - Ignite & Build Update (20210603)
Azure Machine Learning Ignite & Build Update
https://dllab.connpass.com/event/213776/
konabuta
June 03, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
200
Azure Machine Learning 大規模機械学習
konabuta
0
310
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.3k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
370
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.1k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.1k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
480
Other Decks in Technology
See All in Technology
MIMEと文字コードの闇
hirachan
2
1.4k
エンジニアリング価値を黒字化する バリューベース戦略を用いた 技術戦略策定の道のり
kzkmaeda
6
2.4k
"TEAM"を導入したら最高のエンジニア"Team"を実現できた / Deploying "TEAM" and Building the Best Engineering "Team"
yuj1osm
1
110
内製化を加速させるlaC活用術
nrinetcom
PRO
2
140
CDKでカスタムランタイムを作成して、Lambdaをnode.js23+TypeScriptで動かしてみた
smt7174
2
110
「正しく」失敗できる チームの作り方 〜リアルな事例から紐解く失敗を恐れない組織とは〜 / A team that can fail correctly
i35_267
4
840
スキルだけでは満たせない、 “組織全体に”なじむオンボーディング/Onboarding that fits “throughout the organization” and cannot be satisfied by skills alone
bitkey
0
160
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
140
組織におけるCCoEの役割とAWS活用事例
nrinetcom
PRO
4
120
株式会社Awarefy(アウェアファイ)会社説明資料 / Awarefy-Company-Deck
awarefy
3
11k
ESXi で仮想化した ARM 環境で LLM を動作させてみるぞ
unnowataru
0
160
依存パッケージの更新はコツコツが勝つコツ! / phpcon_nagoya2025
blue_goheimochi
3
210
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.4k
Six Lessons from altMBA
skipperchong
27
3.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
For a Future-Friendly Web
brad_frost
176
9.6k
How to train your dragon (web standard)
notwaldorf
91
5.9k
4 Signs Your Business is Dying
shpigford
182
22k
Statistics for Hackers
jakevdp
797
220k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
What's in a price? How to price your products and services
michaelherold
244
12k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
990
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Transcript
Azure Machine Learning Ignite & Build アップデート 女部田啓太
アジェンダ
アジェンダ
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
アジェンダ
最新アップデート情報
Microsoft が PyTorch の Enterprise サポートを提供 PyTorch Enterprise | PyTorch
Delivering reliable production experiences with PyTorch Enterprise on Microsoft Azure - Microsoft Open Source Blog
Compute Instance が Visual Studio Code に対応
コンピューティング インスタンスを作成および管理する - Azure Machine Learning | Microsoft Docs Compute
Instance のカスタム構成
デモンストレーション
None
マネージド オンライン エンドポイントを使用して ML モデルをデプロイする - Azure Machine Learning |
Microsoft Docs Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなオンライン推論環境
バッチ エンドポイントを使用したバッチ スコアリング - Azure Machine Learning | Microsoft Docs
Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなバッチ推論環境
CLI & REST API のエンハンスメント 2.0 CLI を使用してモデルをトレーニングする (ジョブを作成する) -
Azure Machine Learning | Microsoft Docs Announcing the new CLI and ARM REST APIs for Azure Machine Learning - Microsoft Tech Community
デモンストレーション
None
None
MLFlow Integration Experiments Local machine Virtual machine Azure ML Compute
Azure Databricks ML Tracking and Model Deployment Azure Machine Learning Experiments and Metrics Tracking Metrics Artifacts Logging API Tracking URI Model API 実験メトリックとモデル管理の連携
集計されたモデル精度指標では捉えられないモデル誤差の傾向分析 ① Identification ② Diagnostics 誤差が大きいコホートを特定する 木構造で各条件下におけるエラー率・カバレッジを表示 対象のコホートを比較し深掘り分析する データ探索 グローバル解釈
ローカル解釈 what-if 分析 Learn More : Error Analysis
ラベリング機能のインスタンスセグメンテーションへの対応 画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs
画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs テキストデータ用のラベリング機能
アジェンダ
基礎編 2021年6月11日(金) 16:00 - 17:30 https://dllab.connpass.com/event/211482/
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
None
None