Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アッ...
Search
konabuta
November 12, 2020
Technology
0
1.2k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
Ignite 2020 最新アップデート Analytics & AI での講演資料です。
konabuta
November 12, 2020
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
230
Azure Machine Learning 大規模機械学習
konabuta
0
370
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.5k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
420
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2.1k
Azure Machine Learning - Ignite & Build Update (20210603)
konabuta
0
960
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
550
Other Decks in Technology
See All in Technology
Oracle Cloud Infrastructure:2025年8月度サービス・アップデート
oracle4engineer
PRO
0
190
TypeScript入門
recruitengineers
PRO
35
12k
衝突して強くなる! BLUE GIANTと アジャイルチームの共通点とは ― いきいきと活気に満ちたグルーヴあるチームを作るコツ ― / BLUE GIANT and Agile Teams
naitosatoshi
0
300
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
160
モバイルアプリ研修
recruitengineers
PRO
5
1.7k
【Grafana Meetup Japan #6】Grafanaをリバプロ配下で動かすときにやること ~ Grafana Liveってなんだ ~
yoshitake945
0
220
Browser
recruitengineers
PRO
8
2.3k
LLM翻訳ツールの開発と海外のお客様対応等への社内導入事例
gree_tech
PRO
0
470
エラーとアクセシビリティ
schktjm
0
720
クラウドセキュリティを支える技術と運用の最前線 / Cutting-edge Technologies and Operations Supporting Cloud Security
yuj1osm
2
270
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
9
3.7k
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
0
170
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
BBQ
matthewcrist
89
9.8k
It's Worth the Effort
3n
187
28k
Embracing the Ebb and Flow
colly
87
4.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Rails Girls Zürich Keynote
gr2m
95
14k
Into the Great Unknown - MozCon
thekraken
40
2k
How STYLIGHT went responsive
nonsquared
100
5.8k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Statistics for Hackers
jakevdp
799
220k
Transcript
Azure Machine Learning 実験サービスとセキュリティ ⼥部⽥啓太 ⽇本マイクロソフト株式会社 Cloud Solution Architect –
Machine Learning & Deep Learning
§ Azure Machine Learning 初⼼者 § Data Scientist、機械学習エンジニア § AI
プロジェクト担当者・責任者 § AI の⺠主化をサポートする実験サービスの概要について理解する § セキュアな Azure Machine Learning の基本構成を理解する 対象者 ゴール
アジェンダ
アジェンダ
Azure Machine Learning
Azure Machine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon / R
モデル検証 パッケージ化と Azure Container Instnaces での検証 モデル学習 コンピューティング クラスター モニタリング モデルのモニタリング デプロイ スケーラブルな kubernetes サービス へのデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
None
None
None
デザイナー Designer
データ ゴール設定 制約条件 Optimized model Feature Engineering model selection Hyperparameter
Tuning ⾃動機械学習 Automated ML
Trusted Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の⽣産性・利便性を向上 DevOps 連携による ML ライフサイクルの運⽤管理 責任のある ML ソリューションの構築 オープンテクノロジーの採⽤ と相互運⽤性の実現
Industry leading MLOps Open & Interoperable For all skill levels
Designer UI & AutoML UI ⼀般提供開始! Trusted Private Link など セキュリティ機能が充実
• 直感的なマウス操作でパイプライン構築 • 特徴量エンジニアリング • モデル学習 (回帰、分類、クラスタリング) • 推論 (リアルタイム
& バッチ) • カスタムモデル・スクリプト (Python, R) 機械学習のモデル構築、テスト、デプロイするためのビジュアルパイプライン ※ 参考 : Azure Machine Learning デザイナー とは https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-designer
None
データのインポート データの主導⼊⼒ データのエクスポート データのビン化 データ結合 データ正規化 パーティションとサンプル 重複⾏の削除 SMOTE 列変換
列の選択 データの分割 列の追加 ⾏の追加 算術演算の適⽤ SQL 変換の適⽤ ⽋損値の除去 値の置換 CSA への変換 データセットへ変換 インジケーター値へ変換 メタデータの編集 フィルター特徴量選択 Permutation 特徴量 デシジョンツリー ディジョンフォレスト ⾼速フォレスト分位点回帰 線形回帰 ロジスティック回帰 ニューラルネットワーク ポワソン回帰 ブーストデシジョンツリー サポートベクターマシン K-Means クラスタリング DenseNet ResNet SVD Recommender Wide Deep Recommender PCA 異常検知 LDA Python モデルの作成 Python スクリプトの実⾏ R スクリプトの実⾏ 画像データ変換処理 画像データの分割 テキスト前処理 Word2Vec Glove FastText クロスバリデーション スコアリング パラメータチューニング
None
ユーザーの⼊⼒ 特徴量 エンジニアリング アルゴリズム の選択 ハイパーパラメータ のチューニング モデルの リーダーボードと解釈 データセット
設定と制約 76% 34% 82% 41% 88% 72% 81% 54% 73% 88% 90% 91% 95% 68% 56% 89% 89% 79% 順位 モデル スコア 1 95% 2 76% 3 53% … ⾃動機械学習は、与えられたデータに対して「最⾼のモデル」を探索するために、 特徴量エンジニアリング、アルゴリズムとハイパーパラメータの選択を⾃動実⾏します。
Python ユーザーなら こっち!
Regression Classification Time Series Forecasting
None
データ準備と探索
ターゲット変数と 計算環境の選択
タスクの選択
モデル⼀覧
モデル精度
モデル解釈
アジェンダ
None
関連リソース Storage Key Vault Container Registry App Insights モデル推論サービス AKS
Cluster ACI 学習データのデータソース Storage Data Lake SQL モデル学習のサービス Compute Instance Compute Cluster 多くの PaaS サービスに 依存している
Authenticate Create Workspace and Authenticate Pass secrets SAS mount Training
Key-based auth Token/key auth ACI AKS Inference Compute Instance Azure Active Directory SSH Get/set secrets 多要素認証 Azure Machine Learning studio
管理者から⾒える画⾯ データ サイエンティストから⾒える画⾯ リソース作成権限なし リソース作成権限あり
Cosmos DB がユーザの Subscription 内で⽴ち上がる (課⾦対象) マイクロソフト 管理 Key お客様管理
Key ドキュメント : Data encryption with Azure Machine Learning Cosmos DB 以外の関連サービスの お客様管理 Key の対応について記載
Machine Learning Workspace Compute Instance Compute Cluster AKS Cluster Your
VNet Storage Key Vault Container Registry Your VNet 機能 ワークスペース - Private Link 関連リソース - サービスエンドポイント - プライベートエンドポイント モデルトレーニング - Behind VNet - Private IP (on roadmap) モデル推論 - AKS Behind VNet - Private AKS Cluster
Private Link を利⽤して、Private Endpoint と Azure PaaS サービスをマッピングします。 Private Endpoint
経由での通信のみ アクセスが許可されるため、インターネット環境 などの外部からのアクセスを遮断できます。 Private Link の発表
Microsoft Managed Azure Batch Services AKS Control Plane Machine Learning
Workspace Our PC VPN Gateway (Private) Microsoft Managed Compute Cluster Compute Instance AKS (Private) Private Endpoint or Your VNet Private Endpoint Service Endpoint
Azure Machine Learning データの監視のリファレンス Azure Policy の組み込みのポリシー定義 – Machine Learning
None
None
Azure 無償トライアル Azure Machine Learning デザイナーとは ⾃動機械学習 AutoML とは エンタープライズセキュリティの概要
⾃動機械学習 デザイナー デザイナーサンプル集 Ignite 2020 セッション (E2E machine learning for enterprises in a secure way)
None
None