Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
Search
konabuta
June 11, 2021
Technology
0
1.9k
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
June 11, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
180
Azure Machine Learning 大規模機械学習
konabuta
0
270
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.2k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
330
Azure Machine Learning - Ignite & Build Update (20210603)
konabuta
0
810
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.1k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
450
Other Decks in Technology
See All in Technology
それでもやっぱり ExpressRoute が好き!
skmkzyk
0
400
見えづらい活動の成果の伝え方は日頃からめちゃくちゃ悩んでるけど、実際こんな取り組みをしな がら温度感を合わせにいってるよ / Conveying Hard-to-See Results
kakehashi
4
2k
令和最新版 Perlコーディングガイド
anatofuz
5
4k
Vespaを利用したテクいベクトル検索
szdr
2
200
AWS Lambdaで実現するスケーラブルで低コストなWebサービス構築/YAPC::Hakodate2024
fujiwara3
7
3.7k
エムスリー全チーム紹介資料 / Introduction of M3 All Teams
m3_engineering
1
330
Semantic Kernel の Agent 機能試してみた!
okazuki
1
180
Azure Verified Moduleを触って分かった注目ポイント/azure-verified-module-begin
mhrtech
1
510
ガバメントクラウド開発と変化と成長する組織 / Organizational change and growth in developing a government cloud
kazeburo
4
1.1k
WSUSが非推奨に!? Windowsの更新管理を改めて勉強する!
ebibibi
0
360
Efficient zero-copy networking using io_uring
ennael
PRO
0
410
ファインディにおけるフロントエンド技術選定の歴史
puku0x
1
110
Featured
See All Featured
The Language of Interfaces
destraynor
154
24k
The Power of CSS Pseudo Elements
geoffreycrofte
71
5.3k
A better future with KSS
kneath
237
17k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
37
1.7k
Fireside Chat
paigeccino
32
3k
The Mythical Team-Month
searls
218
43k
Building Better People: How to give real-time feedback that sticks.
wjessup
362
19k
Done Done
chrislema
181
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
25
660
How to Think Like a Performance Engineer
csswizardry
17
1k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.8k
Producing Creativity
orderedlist
PRO
341
39k
Transcript
Azure Machine Learning ハンズオンシリーズ 基礎編 2021年6月11日(金) 16:00 - 17:30
Slack ワークスペース
None
None
None
None
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
https://aka.ms/ml-docs
None
Azure Machine Learning Workspace とは? アーキテクチャと主要な概念 - Azure Machine Learning
| Microsoft Docs 関連 Azure サービス リソース アセット
付属リソース Storage Key Vault Container Registry App Insights モデル推論サービス AKS
Cluster ACI 学習データのデータソース Storage Data Lake SQL モデル学習のサービス Compute Instance Compute Clusters 多くの PaaS サービスに 依存している ※ Microsoft Managed のため、Azure Portal からは見えない
None
None
None
https://aka.ms/titanic0611
None
作成者 • Notebooks - コーディング環境 • Automated ML - 自動機械学習
• Designer - GUI 機械学習プロセス実行 アセット • Datasets - データの登録と管理 • Experiments - 実験記録 • Pipelines - 学習・推論のパイプライン • Models - モデル管理 • Endpoints - エンドポイント管理 管理 (環境・データ) • Compute - 学習・推論の計算環境 • Datastores - データソースの設定 • Data Labeling - ラベリング機能
Python & R ユーザも Azure ML studio を併用します
ユーザーの入力 特徴量 エンジニアリング アルゴリズム の選択 ハイパーパラメータ のチューニング モデルの リーダーボードと解釈 データセット
設定と制約 76% 34% 82% 41% 88% 72% 81% 54% 73% 88% 90% 91% 95% 68% 56% 89% 89% 79% 順位 モデル スコア 1 95% 2 76% 3 53% … 自動機械学習は、与えられたデータに対して「最高のモデル」を探索するために、 特徴量エンジニアリング、アルゴリズムとハイパーパラメータの選択を自動実行します。
• 直感的なマウス操作でパイプライン構築 • 特徴量エンジニアリング • モデル学習 (回帰、分類、クラスタリング) • 推論 (リアルタイム
& バッチ) • カスタムモデル・スクリプト (Python, R) 機械学習のモデル構築、テスト、デプロイするためのビジュアルパイプライン ※ 参考 : Azure Machine Learning デザイナー とは https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-designer
Python & R の実装をサポートする実験環境
• 様々なスペックのVMを選択・起動 • 自動スケールアウト・ダウン • ジョブ管理、スケジュール管理 学習コード train train train
ジョブ・スケジュール管理 • Job に必要なライブラリ・データを自動で準備 ・・・ • 低優先度オプション : 80% 割引で利用可能 モデル学習・推論のためのクラウドネイティブなクラスター環境
None
Machine Learning Practices & Tips Microsoft Machine Learning Collection Data
Scientist 向けページ
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
https://forms.office.com/r/dV5heemZnv
None
None