Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
Search
konabuta
June 11, 2021
Technology
0
2.2k
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
June 11, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
250
Azure Machine Learning 大規模機械学習
konabuta
0
400
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.6k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.2k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
440
Azure Machine Learning - Ignite & Build Update (20210603)
konabuta
0
980
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.2k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
580
Other Decks in Technology
See All in Technology
ソフトとハード両方いけるデータ人材の育て方
waiwai2111
1
540
VRTと真面目に向き合う
hiragram
1
140
手軽に作れる電卓を作って イベントソーシングに親しもう CQRS+ESカンファレンス2026
akinoriakatsuka
0
500
OCI技術資料 : OS管理ハブ 概要
ocise
2
4.2k
コミュニティが持つ「学びと成長の場」としての作用 / RSGT2026
ama_ch
2
420
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
230
Kusakabe_面白いダッシュボードの表現方法
ykka
0
360
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
64k
Claude in Chromeで始める自律的フロントエンド開発
diggymo
1
180
ReproでのicebergのStreaming Writeの検証と実運用にむけた取り組み
joker1007
0
340
形式手法特論:コンパイラの「正しさ」は証明できるか? #burikaigi / BuriKaigi 2026
ytaka23
17
6.4k
Introduction to Bill One Development Engineer
sansan33
PRO
0
350
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
45
A Tale of Four Properties
chriscoyier
162
24k
Navigating Weather and Climate Data
rabernat
0
72
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
83
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
100
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
890
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
890
Music & Morning Musume
bryan
46
7k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
150
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
510
Transcript
Azure Machine Learning ハンズオンシリーズ 基礎編 2021年6月11日(金) 16:00 - 17:30
Slack ワークスペース
None
None
None
None
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
https://aka.ms/ml-docs
None
Azure Machine Learning Workspace とは? アーキテクチャと主要な概念 - Azure Machine Learning
| Microsoft Docs 関連 Azure サービス リソース アセット
付属リソース Storage Key Vault Container Registry App Insights モデル推論サービス AKS
Cluster ACI 学習データのデータソース Storage Data Lake SQL モデル学習のサービス Compute Instance Compute Clusters 多くの PaaS サービスに 依存している ※ Microsoft Managed のため、Azure Portal からは見えない
None
None
None
https://aka.ms/titanic0611
None
作成者 • Notebooks - コーディング環境 • Automated ML - 自動機械学習
• Designer - GUI 機械学習プロセス実行 アセット • Datasets - データの登録と管理 • Experiments - 実験記録 • Pipelines - 学習・推論のパイプライン • Models - モデル管理 • Endpoints - エンドポイント管理 管理 (環境・データ) • Compute - 学習・推論の計算環境 • Datastores - データソースの設定 • Data Labeling - ラベリング機能
Python & R ユーザも Azure ML studio を併用します
ユーザーの入力 特徴量 エンジニアリング アルゴリズム の選択 ハイパーパラメータ のチューニング モデルの リーダーボードと解釈 データセット
設定と制約 76% 34% 82% 41% 88% 72% 81% 54% 73% 88% 90% 91% 95% 68% 56% 89% 89% 79% 順位 モデル スコア 1 95% 2 76% 3 53% … 自動機械学習は、与えられたデータに対して「最高のモデル」を探索するために、 特徴量エンジニアリング、アルゴリズムとハイパーパラメータの選択を自動実行します。
• 直感的なマウス操作でパイプライン構築 • 特徴量エンジニアリング • モデル学習 (回帰、分類、クラスタリング) • 推論 (リアルタイム
& バッチ) • カスタムモデル・スクリプト (Python, R) 機械学習のモデル構築、テスト、デプロイするためのビジュアルパイプライン ※ 参考 : Azure Machine Learning デザイナー とは https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-designer
Python & R の実装をサポートする実験環境
• 様々なスペックのVMを選択・起動 • 自動スケールアウト・ダウン • ジョブ管理、スケジュール管理 学習コード train train train
ジョブ・スケジュール管理 • Job に必要なライブラリ・データを自動で準備 ・・・ • 低優先度オプション : 80% 割引で利用可能 モデル学習・推論のためのクラウドネイティブなクラスター環境
None
Machine Learning Practices & Tips Microsoft Machine Learning Collection Data
Scientist 向けページ
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
https://forms.office.com/r/dV5heemZnv
None
None