Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
得失点と対比較法に基づく試合結果の予測手法‐Bリーグへの適用 / Presentation in JSBS2019
konakalab
December 21, 2019
Science
0
120
得失点と対比較法に基づく試合結果の予測手法‐Bリーグへの適用 / Presentation in JSBS2019
「日本バスケットボール学界第6回大会(2019年12月21日‐22日)」(
https://www.jsbs.info/congress
) で発表のプレゼンテーションです.
konakalab
December 21, 2019
Tweet
Share
More Decks by konakalab
See All by konakalab
男子プロテニスのサービス着地点およびランキングポイントに基づく予測得点確率モデルの構築 / Construction of scoring probability model based on service landing location and ranking points in men’s professional tennis matches
konakalab
0
56
授業でスポーツ結果予測コンペを行いました / Sports prediction competition as a coursework
konakalab
0
34
プロバスケットボール・B.LEAGUEにおけるインパクトメトリクスの提案 / Proposal of an impact metrics in B.LEAGUE
konakalab
0
96
東京オリンピック2020予測モデルの構築と検証 / Prediction results of team ball games at Tokyo 2020 Olympic Games
konakalab
0
62
B.LEAGUE におけるバスケットボールのリアルタイム勝利確率モデルの構築 / Realtime win probability model for B.LEAGUE
konakalab
0
130
データでスポーツを楽しもう! / Enjoy sports with data! (2021-11-30)
konakalab
0
130
Graph partitioning method for multiple autonomous surveillance robots
konakalab
0
24
Home advantage of European major football leagues under COVID-19 pandemic
konakalab
0
68
MATLAB でスポーツ統計・予測: スクレイピング モデル構築 可視化/Sports statistics with MATLAB -scraping, modeling, and visualization
konakalab
0
420
Other Decks in Science
See All in Science
Kaggle Feedback Prizeコンペ 反省会
shimacos
4
1.3k
[勉強会資料メモ] Double/Debiased ML
masa_asa
0
190
初学者向けDjango教材を作ってみた
miura55
1
330
Elix, CBI, 招待講演, ElixにおけるAI創薬と最新動向, 2021-10-26
elix
0
150
不審なURLの見つけ方
secchick
1
200
20220216_球体周りの流れ抗力係数2_blockMeshでベースメッシュ作成
kamakiri1225
0
190
統計的因果推論の勉強会@2022
arumakan
4
2.4k
(2022) Règle, compas et au-delà
mansuy
0
250
Quaternion Rotation
usamik26
0
360
資料科學哪有這麼可愛
line_developers_tw
PRO
0
1.5k
令和3年I -3B京都大学大学院物理過去問
kamakiri1225
0
420
About ISEE NLFFF database (v1.1)
hsc_nagoya
0
1.3k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
21
5.4k
Automating Front-end Workflow
addyosmani
1351
200k
Writing Fast Ruby
sferik
612
57k
Code Reviewing Like a Champion
maltzj
506
37k
jQuery: Nuts, Bolts and Bling
dougneiner
56
6.4k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
498
130k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
11
4.7k
Designing with Data
zakiwarfel
91
3.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
39
13k
Fireside Chat
paigeccino
12
1.3k
Adopting Sorbet at Scale
ufuk
63
7.6k
Typedesign – Prime Four
hannesfritz
34
1.4k
Transcript
得失点と対比較法に基づく 試合結果の予測手法 ‐Bリーグへの適用 小中英嗣(名城大学) 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 1
小中英嗣(こなか・えいじ) 理工系学部大学教員 スポーツ統計解析 得失点(のみ)に基づく実力評 価と予測 出版済み(「バスケットボール 研究」第3号(2017年11月)) 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 2
研究背景 (含自己紹介)
得失点のみに基づく 実力評価 得失点のみに基づく実力評価と予測 BOXSCOREは? アドバンスドスタッツは?4Factorsは? 使わないの?? 「なぜそれを行いたいのか?」 「それは本当に可能なのか?」 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学
3 競技間の普遍性に立脚する
二つの目的 なぜ得失点のみに基づく実力評価を行いたいのか? 直近の試合の予測をバンバン当てまくる × (もし許可されるのであれば)ベッティングを当てまくって・・・ × 競技・リーグの特徴を明らかにしたい ◎ 「その競技・リーグの魅力は何か?」 勝敗が予測できないこと?
何点差までが「よくできた」なのか? 実力の評価 競技間で普遍的な量でのみ評価を行いたい 「得点が多いほうが勝つ」競技の普遍性 自分が1点取る間に何点取られるか? ↑を何回繰り返すか? 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 4
「得点が多いほうが勝つ」 競技の数理モデル(1) , : 得点があったとき,チームがチームに対して得点している確率 , :チームの実力評価値(レーティング) 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学
5
「得点が多いほうが勝つ」 競技の数理モデル(1) , : 得点があったとき,チームがチームに対して得点している確率 , :チームの実力評価値(レーティング) 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学
6 , = 1 1 + exp − + 実力差0⇒得点確率0.5 実力差大⇒得点確率大
「得点が多いほうが勝つ」 競技の数理モデル(2) : 1試合でのプレイ単位(サービス/時間/など)数 : プレイ単位ごとにどちらかが得点する確率 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 7 実力差0⇒勝率0.5
「得点が多いほうが勝つ」 競技の数理モデル(2) : 1試合でのプレイ単位(サービス/時間/など)数 : プレイ単位ごとにどちらかが得点する確率 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 8 実力差0⇒勝率0.5
プレイ数・得点回数(= β)大 ↓ 小さな得点力の差が大きな 勝率差に
「得点が多いほうが勝つ」 競技の数理モデル(2) : 1試合でのプレイ単位(サービス/時間/など)数 : プレイ単位ごとにどちらかが得点する確率 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 9 実力差0⇒勝率0.5
得失点のみ利用した統一モデル , = 1 1 + exp (− + ) プレイ数・得点回数(= β)大 ↓ 小さな得点力の差が大きな 勝率差に
処理手順の概要 実際の得点割合と予測得点割合, の差を小さくするよう に,各チームの実力評価値 を修正する , = 1 1 +
exp − + 実力評価値の修正が終わったら,実際の勝敗と予測得点割合 , の差を小さくするように,競技パラメータを修正する , = 1 1 + exp (− + ) (いずれも「勾配法」とその変種.工学系ではポピュラーな手法) 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 10
得失点のみに基づく 実力評価:これまでの活動 リオ五輪5競技10種目 バレーボール国際大会 2010年~2019年 16大会 大相撲 1959年~現在 得失点≒勝敗 サッカー
FIFAワールドカップ2018,Jリーグ2015-2019 バスケットボール FIBAワールドカップ2019,Bリーグ2016/17- 2018/19 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 11
予測公開 on Twitter https://twitter.com/konakalab/status/1205328077338759168 https://twitter.com/konakalab/status/1205328274261282816 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 12
予測性能 Q: Bリーグでの提案手法の予測性能はどれくらい? 節単位での予測 予測対象はB1,B2それぞれ.第6節以降. 予測出力:予測勝率 指標 予測正解率:“予測勝率が高いほうが勝つ” 較正値: (優位チームの予測勝率の和)/(優位チームの実勝利数)
1.0:予測勝率が適切.1.0以上:上位チームを過大評価 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 13
予測結果 Season Matches Corrects Accuracy Calibration Total 2831 1986 0.7015
1.015 Total B1 1438 1011 0.7031 1.012 Total B2 1393 975 0.6999 1.017 2018/19 B1 486 351 0.7222 0.982 2018/19 B2 468 319 0.6816 1.041 2017/18 B1 481 336 0.6985 1.009 2017/18 B2 468 328 0.7009 0.984 2016/17 B1 471 324 0.6879 1.049 2016/17 B2 457 328 0.7177 1.026 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 14
予測結果 Season Matches Corrects Accuracy Calibration Total 2831 1986 0.7015
1.015 Total B1 1438 1011 0.7031 1.012 Total B2 1393 975 0.6999 1.017 2018/19 B1 486 351 0.7222 0.982 2018/19 B2 468 319 0.6816 1.041 2017/18 B1 481 336 0.6985 1.009 2017/18 B2 468 328 0.7009 0.984 2016/17 B1 471 324 0.6879 1.049 2016/17 B2 457 328 0.7177 1.026 予測正解率はおおむね 70%前後 B1,B2では差が無さそう 較正値も適切(予測勝率と) 実勝利数がよく一致してい る) 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 15
まとめ 得失点のみ利用した実力評価と予測 「得点を競い合い,多く得点したほう が勝利」するスポーツの普遍的な構 造 Bリーグは約70%の予測正解率 実力の定量的評価 何点差までが「よくやった」なのか? リーグが打ち出すべき「魅力」は何 か?
70%の試合で「試合前に強そうな チームが実際に勝つ」 2019/12/21 日本バスケットボール学会第六回学会大会@流通経済大学 16 予測正解率 リオ五輪10種目 70.8% バレーボール16大会 78.0% 大相撲幕内1959年~ 60.0% FIFA WC 2018 [*]60.9% J 2015-2019 [*]45.9% FIBA WC 2019 [**]76.0% B 2016/17-2018/19 70.1% [*]引き分けは不正解 [**]1次ラウンド途中からを予測対象