Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML 使ってみた
Search
konumaru
August 12, 2020
Technology
0
180
AutoML 使ってみた
GCP AutoML を使って、App Store Review の感情分析をしてみた。
konumaru
August 12, 2020
Tweet
Share
More Decks by konumaru
See All by konumaru
Cursor × Marp 勉強会
konumaru
3
1.3k
レコメンドエンジンを Figma で爆速 UX リサーチ
konumaru
0
8.3k
main.pdf
konumaru
0
290
7日で学んだ強化学習
konumaru
0
250
Other Decks in Technology
See All in Technology
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
450
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
350
[CMU-DB-2025FALL] Apache Fluss - A Streaming Storage for Real-Time Lakehouse
jark
0
110
チーリンについて
hirotomotaguchi
6
1.9k
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
300
5分で知るMicrosoft Ignite
taiponrock
PRO
0
340
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
460
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
690
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
260
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
410
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
170
Featured
See All Featured
Done Done
chrislema
186
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
For a Future-Friendly Web
brad_frost
180
10k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The Invisible Side of Design
smashingmag
302
51k
Practical Orchestrator
shlominoach
190
11k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Transcript
GCP Natural Language AutoML 触ってみた 1
ToC MLプロジェクトのプロセス MLプロジェクトににおける課題 なぜAutoMLをやるのか AutoML の紹介(202008時点) 先⾏事例 やったこと まとめ 2
MLプロジェクトのプロセス 企画 机上検証 実証実験 システム開発 システム運⽤ だいたいこんな感じ 3
MLプロジェクトにおける課題(の⼀部) 主に机上検証・実証実験における課題 データの質・量がよろしくない コードの品質が悪い 適切なモデルをつくることが難しい 4
なぜAutoMLをやるのか データの前処理やクレンジングを担ってくれるのか コードの質を気にせずにモデルをつくることができるのか 適切なモデルというの確かめることができるか これらを AutoML が解決できるのかを確かめる。 5
AutoML の紹介(202008時点) AutoML Vision(画像分析) AutoML Video Intelligence(動画分析) AutoML Natural Language(⾃然⾔語処理)
<- 今回はこれやる AutoML Translation(翻訳) AutoML Tables(構造化データの分析) 6
先⾏事例 画像分類 LIFULL, 物件画像の分類 cookpad, 商品画像の分類 その他事例 https://cloud.google.com/automl?hl=ja , etc
7
やったこと GCP Natural Language AutoML を使う データの取得 データの加⼯ AutoMLにデータを投⼊ データが読み込まれる
8
GCP Natural Language AutoML を使う エンティティの抽出 コンテンツ分類 感情分析 <- 今回はこれやる
9
データの取得 右の画像のようなレビューデータ をGASでクローリング Spredsheet に保存 全部で22アプリのレビューデータ を取得 ジャンルは、EC, Game, ⼈材,
漫画 などなど 10
データのラベル付け 今回はレビューデータを使うので、あらかじめ星が付いてる。 したがって、ユーザーが付けた星を正とする。 ラベルデータがないなら ⾃分でラベルを付ける。 AutoML Natural Language UI(Data Labeling)などを活⽤する。
AI Platform Data Labeling Service を使⽤して⼈間のラベル付け担当者に依頼する。 11
データの加⼯ 収取したレビューデータをAutoML が望む形に加⼯する必要がある。 いくつかある中で、今回は右のよ うなフォーマットを選択。 ✗: 1 label - 1
file ◦: 1 record - 1 file Source: https://github.com/konumaru/sentime nt_analysis/blob/master/main.py 12
データの投⼊(Items) 13
Train ワンクリックで実⾏できる。 学習⽤データ・評価⽤データをよ しなに分割してくれる。 学習は何度も実⾏でき、モデルご とにUnique_IDが割り当てられる。 評価⽤データにおける精度を確認 できる。 学習⽤データの精度がみれないの で、過学習の判断ができない。
14
Evaluate 評価⽤データの評価結果が⾒れ る。 評価⽤データのラベルごとの数が わかる。 評価結果では、Confusion Matrix もみることができる。 15
Test & Use 簡易的に未知のデータを使って予 測することができる。 勝⼿にREST API も作ってくれる。 上記を呼べるようなpythonスクリ プトの例も出してくれる。
16
Pros / Cons 17
Pros 決まったデータさえあれば予測モデルからAPIまでつくれる。 GUIでデータのクレンジングができる。 GUIで予測結果を探索できる。インタラクティブで楽しい。 (良し悪しはあるが)学習・評価データを勝⼿に分割してくれる。 18
Cons 問題設定が限られるので使い所が難しい データの前処理が必要なので no code という訳にはいかない。 データの前処理が結構たいへん(ここが⼀番Autoになってほしいな...) ⾃作する場合よりもモデルの解釈が難しい。 過学習が判断できない。 19
まとめ 基本的には便利 机上検証・実証実験における課題のうち、コードにまつわる課題は解決されている。 ⼀⽅で、 使い所が限られる。 モデルの解釈・分析が難しい。 データの前処理は相変わらず⼤変。 ⾊々あるが、 今後⼤いに期待できるツールになるはず。 20
おまけ:本当に感情分析するなら 感情というあいまいな情報を抽出しようという試みなのでどこかで妥協が必要 機械的な分析を諦め、定性分析を⾏う -> tensorflow embedding 機械的な分析を諦められないなら -> 分散表現を獲得し、k-meansなどでクラスタリングした後、スコアリングすると か?
(しかし、ものすごくうまく動くことは期待できないと思う) 21