$30 off During Our Annual Pro Sale. View Details »

Machine Learning の新機能✨ / What's New in Machine Learning

神武
June 14, 2019

Machine Learning の新機能✨ / What's New in Machine Learning

WWDC19で発表されたMLの新機能まとめスライドです。
このスライドを見ればWWDCのML関連の話題がだいたい掴めます。

- お断り -
このスライドは一般公開されているWWDC19のスライドのみ引用しています。

iOS de KANPAI !【WWDC 2019 報告会】
15 min

神武

June 14, 2019
Tweet

More Decks by 神武

Other Decks in Technology

Transcript

  1. .BDIJOF-FBSOJOHͷ৽ػೳ✨

    View Slide

  2. !LPPPPPUBLF
    ͡ΜΉ
    ͓அΓ
    ͜ͷεϥΠυ͸Ұൠެ։͞Ε͍ͯΔ88%$ͷεϥΠυͷΈҾ༻͍ͯ͠·͢

    View Slide

  3. View Slide

  4. ηογϣϯ

    View Slide

  5. 7JEFP63-
    IUUQTEFWFMPQFSBQQMFDPNWJEFPTQMBZXXED
    7JEFP
    ৄ͘͠஌Γ͍ͨ࣌͸

    View Slide

  6. Summary
    Create ML Domain API Core ML 3
    7JEFP

    View Slide

  7. Create ML
    $SFBUF.-
    .-ϞσϧΛ4XJGUͰ࡞Δ͜ͱ͕Ͱ͖Δ

    View Slide

  8. Create ML

    View Slide

  9. Sound Activity Tabular
    Image Text
    Create ML

    View Slide

  10. <9DPEF><0QFO%FWFMPQFS5PPM><$SFBUF.->
    Create ML

    View Slide

  11. Create ML

    υϥοάυϩοϓͰ؆୯ʹ

    View Slide

  12. Image Classifier Object Detector

    View Slide

  13. %&.0

    View Slide

  14. ෯޿͍.-ϞσϧΛ
    ؆୯ʹ࡞Δ͜ͱ͕Ͱ͖Δྫ
    Create ML

    View Slide

  15. Image Classifier Object Detector
    7JEFP

    View Slide

  16. αΠίϩͷ໨ΛσΟςΫτ
    Dice Detection Model
    5
    5
    4
    4
    6

    View Slide

  17. Sound Classifier
    7JEFP

    View Slide

  18. ԻΛฉ͖෼͚Δ

    View Slide

  19. Text Classifier Word Tagger
    7JEFP

    View Slide

  20. จষͷײ৘εύϜτϐοΫΛ෼ྨ
    Text Classification
    Topic Classification
    Spam/Not Spam
    Sentiment Analysis !
    "
    Lorem ipsum dolor sit amet, consectetur
    adipiscing elit, sed do eiusmod tempor
    incididunt ut labore et dolore magna aliqua.
    Label 1
    Label 2
    Label 3
    Ut enim ad minim veniam, quis nostrud
    exercitation ullamco laboris nisi ut aliquip ex
    ea commodo consequat.
    Excepteur sint occaecat cupidatat non
    proident, sunt in culpa qui officia deserunt
    mollit anim id est laborum

    View Slide

  21. Tabular Classifier Tabular Regressor Recommender
    7JEFP

    View Slide

  22. Hardtrail
    Mountain
    Aspen Valley
    Pleasant Cove
    For You:
    Rocky Peak Cactus Ridge
    ͜ͷࢁΛߴධՁʹͨ͠ਓʹ
    ࣍ʹొΔࢁΛϨίϝϯυ

    View Slide

  23. Activity Classifier
    7JEFP

    View Slide

  24. "QQMF8BUDIͷηϯαΛར༻
    Device Sensors
    g
    a
    r
    Accelerometer Gyroscope
    Magnetometer
    Altimeter

    View Slide

  25. ͲͷߦಈΛ͍ͯ͠Δ͔Λ෼ྨ
    Jogging
    Standing
    Gestures
    Gaming
    Golf
    Swimming

    View Slide

  26. .-Y"3
    +
    7JEFP

    View Slide

  27. "QQMF1FODJMͰखॻ͖จࣈࣝผ

    View Slide

  28. "3͢͝Ζ͘ͱ૊Έ߹Θͤ

    View Slide

  29. ✨؆୯ʹ࣮ݱͰ͖Δ✨

    View Slide

  30. ͡ΜΉͷਪ͠
    ϑϦεϏʔͷ౤͛ํ෼ྨͷ%&.0
    Frisbee Motion Classifier
    Hammer Bowler
    Chicken Wing Backhand
    Forehand
    7JEFP

    View Slide

  31. Summary
    Create ML Domain API Core ML 3

    View Slide

  32. %PNBJO"1*
    ֶशࡁΈͷϞσϧѻ͑Δ

    View Slide

  33. Face capture quality
    Sound analysis
    Speech Saliency
    Speech on Mac
    Sentiment classification
    Animal Detection
    Text Recognition
    Object Tracking
    Attention Saliency
    Document Camera
    On device speech
    Word Tagging
    Image similarity
    Face Landmark
    Image Similarity
    Landmark Detection
    Image saliency
    Rectangle Detection
    Text catalog
    Word Embeddings
    Image Classification
    NL Transfer learning

    View Slide

  34. 7JTJPO'SBNFXPSL
    *NBHF
    7JEFP

    View Slide

  35. ਓ͕Ͳ͜ʹண໨͢Δ͔Λֶश
    Attention and Objectness Based Saliency

    View Slide

  36. લܠͱޙܠΛֶश
    Attention and Objectness Based Saliency

    View Slide

  37. ˠը૾͔ΒॏཁͳΦϒδΣΫτΛநग़
    Bounding Boxes
    (0,0)

    View Slide

  38. ը૾ͷྨࣅ౓Λܭࢉ
    Precision and Recall
    Recall
    Percentage of Target Class retrieved from entire library

    View Slide

  39. 'BDF-BOENBSLTͷվળ
    76pt
    Face Landmarks
    65pt
    Single Confidence Score Confidence Score per point
    New

    View Slide

  40. ਓؒݕ஌
    New Detectors - Human Detector

    View Slide


  41. New Detectors - Cat and Dog Detectors
    Cat
    Dog Dog
    Dog
    Cat

    View Slide

  42. τϥοΩϯάਫ਼౓ͷվળ
    New Object Tracker

    View Slide

  43. 7JTJPO'SBNFXPSL
    5FYU
    7JEFP

    View Slide

  44. จࣈ͓͜͠

    View Slide

  45. ଎͞WTਖ਼֬͞
    Fast Versus Accurate
    Fast Accurate
    Processing time Optimized for real-time Asynchronous processing
    Memory footprint Smallest Larger
    Support for rotated text Limited Broad
    Support for variety of fonts Limited Diverse font styles
    Accuracy for natural language Good Best

    View Slide

  46. ద੾ͳύϥϝʔλઃఆΛ͢΂͠
    Use case
    • Read codes/serial numbers just like a barcode reader
    • Constrained camera usage
    • Interactivity is key
    request = VNRecognizeTextRequest(completionHandler: recognizeTextHandler)
    request.recognitionLevel = .fast

    View Slide

  47. ӳޠͷΈ

    View Slide

  48. /BUVSBM-BOHVBHF
    7JEFP

    View Slide

  49. จষͷײ৘ղੳ
    Natural Language
    Sentiment Analysis
    I was so excited for
    the season finale,
    $
    Natural Language
    Sentiment Analysis
    but it was a bit
    disappointing.
    I was so excited for
    the season finale,
    $

    View Slide

  50. Sentiment Analysis
    Text Classification
    Sentiment Analysis
    -1.0 1.0
    Natural Language
    0
    “We had a not so fun time in Hawaii cause mom twisted her ankle.”
    -0.8
    Natural Language Text
    ෛPSਖ਼ͷײ৘ͷ਺஋Խ

    View Slide

  51. 4QFFDIBOE4PVOE
    7JEFP

    View Slide

  52. ΦϯσόΠεͰԻ੠ೝࣝ
    On-Device Device Support
    iPhone 6s and later iPad (5th generation) and later All

    View Slide

  53. ೔ຊޠͳ͍
    On-Device Language Support
    English

    United States, Canada, 

    Great Britain, India
    Spanish

    United States, Mexico, 

    Spain
    Italian
    Brazilian
    Portuguese
    Russian Turkish Chinese

    Mandarin and Cantonese

    View Slide

  54. Ի੠ೝࣝ
    ˙ൃ࿩଎౓
    ˙Ұ࣌ఀࢭ
    ˙੠ͷಛ௃

    View Slide

  55. ੠ͷಛ௃
    ˙+JUUFS໎͍ͷ͋Δ੠ʁ
    ˙4IJNNFSԒͷ͋Δ੠ʁ
    // Printing new results when recognizing pre-recorded audio
    if result.isFinal {
    let formattedString = result.bestTranscription.formattedString
    let speakingRate = result.bestTranscription.speakingRate
    let averagePauseDuration = result.bestTranscription.averagePauseDuration
    for segment in recognitionResult.bestTranscription.segments {
    let jitter = segment.voiceAnalytics?.jitter.acousticFeatureValuePerFrame
    let shimmer = segment.voiceAnalytics?.shimmer.acousticFeatureValuePerFrame
    let pitch = segment.voiceAnalytics?.pitch.acousticFeatureValuePerFrame
    let voicing = segment.voiceAnalytics?.voicing.acousticFeatureValuePerFrame
    }
    }

    View Slide

  56. Summary
    Create ML Domain API Core ML 3

    View Slide

  57. $PSF.-
    7JEFP

    View Slide

  58. Core ML 3
    Model
    Flexibility
    Model

    Personalization
    NEW

    View Slide

  59. Neural Network layers
    100+
    αϙʔτ

    View Slide

  60. ഑෍ϞσϧϚγϚγ

    View Slide

  61. ΦϯσόΠεΞοϓσʔτ
    Update
    Training examples
    UPDATED
    NEW

    View Slide

  62. User Differences
    Ñ
    ൚༻తͳϞσϧͰ͸ਏ͍࣌

    View Slide

  63. Update Task
    Ö

    á
    StickerClassifier
    Update
    Task
    CustomStickerClassifer
    UPDATED
    طଘͷϞσϧΛΞοϓσʔτ

    View Slide

  64. On-Device
    Privacy Available
    No server
    ΦϯσόΠεͷྑ͞

    View Slide

  65. 5VSJ$SFBUF
    1ZUIPOͰ
    $PSF.-ϞσϧΛ࡞Δ͜ͱ͕Ͱ͖Δ
    ϥΠϒϥϦ
    7JEFP

    View Slide

  66. ୔ࢁͷը૾͕ඞཁ
    Original Approach

    View Slide

  67. Ұຕͷը૾Ͱ෺ମݕ஌
    Synthetic Data Augmentation

    View Slide

  68. Synthetic Data Augmentation
    ৽ Ұຕͷը૾Ͱ෺ମݕ஌

    View Slide

  69. View Slide

  70. 88%$ʹࢀՃ͢Δ͔೰ΜͰ͍Δਓ޲͚
    IUUQTOPUFNVLPPPPPUBLFOOFBF

    View Slide

  71. !LPPPPPUBLF
    ͡ΜΉ

    View Slide

  72. %F/"͸ɺຊΠϕϯτͷ಺༰ɺฒͼʹ͓٬༷͕ຊΠϕϯτΛ௨ͯ͡ೖखͨ͠৘ใ౳ʹ͍ͭͯɺ
    ͦͷ׬શੑɺਖ਼֬ੑɺ࣮֬ੑɺ༗༻ੑ౳ʹ͖ͭɺ͍͔ͳΔ੹೚΋ෛΘͳ͍΋ͷͱ͠·͢ɻ

    View Slide