Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SkrGAN: Sketching-rendering Unconditional Gener...
Search
koshian
October 11, 2019
Programming
0
360
SkrGAN: Sketching-rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis
#番外編【画像処理 & 機械学習】論文LT会!〜MICCAI 2019 予習編〜 @ LPIXEL
koshian
October 11, 2019
Tweet
Share
More Decks by koshian
See All by koshian
Wasserstein GANからSpectral Normalizationへ
koshian2
3
1.9k
Other Decks in Programming
See All in Programming
Lookerは可視化だけじゃない。UIコンポーネントもあるんだ!
ymd65536
1
130
QA環境で誰でも自由自在に現在時刻を操って検証できるようにした話
kalibora
1
140
Simple組み合わせ村から大都会Railsにやってきた俺は / Coming to Rails from the Simple
moznion
3
2.9k
見えないメモリを観測する: PHP 8.4 `pg_result_memory_size()` とSQL結果のメモリ管理
kentaroutakeda
0
960
[JAWS-UG横浜 #79] re:Invent 2024 の DB アップデートは Multi-Region!
maroon1st
0
100
PHPで作るWebSocketサーバー ~リアクティブなアプリケーションを知るために~ / WebSocket Server in PHP - To know reactive applications
seike460
PRO
2
780
盆栽転じて家具となる / Bonsai and Furnitures
aereal
0
2k
毎日13時間もかかるバッチ処理をたった3日で60%短縮するためにやったこと
sho_ssk_
1
560
asdf-ecspresso作って 友達が増えた話 / Fujiwara Tech Conference 2025
koluku
0
1.5k
[JAWS-UG横浜 #80] うわっ…今年のServerless アップデート、少なすぎ…?
maroon1st
0
120
PHPで学ぶプログラミングの教訓 / Lessons in Programming Learned through PHP
nrslib
4
1.1k
Rubyでつくるパケットキャプチャツール
ydah
0
210
Featured
See All Featured
It's Worth the Effort
3n
184
28k
Automating Front-end Workflow
addyosmani
1366
200k
How STYLIGHT went responsive
nonsquared
96
5.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
GraphQLとの向き合い方2022年版
quramy
44
13k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Facilitating Awesome Meetings
lara
51
6.2k
Site-Speed That Sticks
csswizardry
3
280
Done Done
chrislema
182
16k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
The Language of Interfaces
destraynor
156
24k
Transcript
SkrGAN: Sketching-rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis
2019/10/11 こしあん(koshian2) #番外編【画像処理 & 機械学習】論文LT会! 〜MICCAI 2019 予習編〜 @ LPIXEL
論文紹介 SkrGANの論文:MICCAI 2019にAccept Tianyang Zhang, Huazhu Fu, Yitian Zhao,
Jun Cheng, Mengjie Guo, Zaiwang Gu, Bing Yang, Yuting Xiao, Shenghua Gao, Jiang Liu. SkrGAN: Sketching-rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis. MICCAI 2019 https://arxiv.org/abs/1908.04346 ざっくりとした特徴 • 医用画像の生成を目的としたGAN(Generative adversarial networks) • Uncodintional GANでProgressive GAN(PGGAN)の応用 • PGGANにはないスケッチ画像によるガイドを追加することで、GANでぼやけがちな輪郭を明 瞭にすることに成功。各評価指標でPGGANを上回り、医用画像の生成ではSoTA。 なぜこの論文を選んだか • 医用画像がテーマだが、本質的には応用範囲は広そう(イラストやアニメの生成にも使えそう) • ありがちな「医用画像はデータが少ないのでGANでAugmentationしましょう」がメインではない。 Data Augmentationについても議論しているがおまけ程度。より本質的な側面に切り込んでお り、意義がありそう。 • 人間が絵を描くプロセスを踏襲しており、直感的に理解しやすい。 • Conditional GANではいろいろな条件(Semantic Segmentation、クラスラベル、ポーズ……) を追加情報として与える風潮があるが、アノテーションデータが必要。スケッチに限れば機械的 に作り出せるので、Uncodintionalでもいける(アノテーション不要)。そこが面白い。
GANとは DiscriminatorとGeneratorという2つのネットワークが敵対するよう に学習することで、高画質な画像生成が可能 最近では非常に高画質な出力が可能に(BigGAN, StyleGAN等) 作った偽物で D(警察)を騙 したい
偽物か本物 か見分けたい Generator (偽造者) Discriminator (警察)
SkrGANの特徴 問題意識 GANで失われがちな前面構造(血管、骨)は医療診断では重要。ここを鮮明に出したい スケッチと着色の2ステージに分ける ⚫ 通常GAN:ノイズ→カラー画像という1ステージ ⚫ SkrGAN:ノイズ→スケッチ(モノクロ)、スケッチ→カラー画像という2ステージ
2ステージにするのはS2GANなど前例はある。SkrGANは損失関数を工夫していて、2ステージ だがEnd-to-Endに訓練できる(はず)。SkrGANは訓練の誘導としてスケッチを入れる。 発想は「現実の絵画の描画手順( realistic drawing procedures of human painting )」からと記 されている。 眼底写真の生成 既存手法で一番まともそうなのがPGGAN 緑の矢印がSkrGANで改善してるポイント (各GANについては後述)
SkrGANの全体図 (1) スケッチの生成 (2) カラーレンダリング Noise→ImageのGAN (普通のGAN) Image→ImageのGAN (pix2pixなど) Noise→ImageのGANを分解し、
スケッチによる「ガイド」を入れる
スケッチの生成 本物のスケッチはどうするの?ス ケッチのデータが必要では? 不要。カラー画像を、 I. Sobelフィルターによるエッジ検出 II. ガウシアンローパスフィルターでノイズ を除去(ガウシアンぼかし)
III. モルフォロジー変換でオープニングした あとクロージングする(詳しくは OpenCVのドキュメント参照) OpenCV等で機械的にスケッチは生成可能! スケッチ生成のG/Dの構成は? PGGANを使う。低解像度→高解像度で訓練 スケッチ生成の損失関数は? 普通のGANと同じ。zはノイズ、lというlatent codeを用意し、要素積取ってるのが特徴
カラーレンダリング Image to imageのGAN。スケッチを 着色する。Gの構成はU-Net。 カラーレンダリングの損失関数は? (Adversarial loss)
+ λ×(L1 loss) L1 lossは教師あり学習と同じ。訓練を加速さ せる。λ=100(多少変えてもほとんど影響な い)。着色部分はpix2pixと同じ。 全体の損失関数は? スケッチと着色が一本の損失関数で表せるの でEnd-to-Endで訓練できるはず(コードが公 開されていないので詳細不明) 疑問点:PG-GANのProgressive Growing(低解像度→高解像度)の訓練をやっている間に 着色部分のU-Netはどう訓練するの? 訓練段階をスケッチと着色で分割する? U-NetもProgressive Growingするの? 偽のスケッチが出力されたらリサイズしてU-Netに入力するの?(特に記述がない)
データと評価指標 3つのPublic dataと1つのPrivate data を使用 Public data 1.
Chest X-Ray dataset:胸部X線画像 肺炎or正常、5863枚。Kaggleより 2. Kaggle Lung dataset:CTスキャン画像 肺のセグメンテーション。267枚。Kaggle 3. Brain MRI dataset:脳のMRI画像 147枚。有料らしい Private data 病院から集めた6432枚の眼底写真からなる データセット どのデータにおいても、ラベル情報 は不要(アノテーション要らない) 512x512の解像度で生成 TITAN XP2枚でバッチサイズ16で訓練 評価指標3つ→ MS-SSIM (multi-scale structural similarity) ピクセルの相関に注目した2画像間の類似度。 完全に同一画像なら1。 →本論文では「高いほうが良い」とあるが、 高すぎるとモード崩壊していることがあり、 低いほうが良いとする文献も多いのに注意。 SWD (Sliced Wasserstein Distance) ラプラシアンピラミッド(≒画像を周波数分 解)からパッチを取り、乱数で1次元に投射し たときのWasserstein距離。PGGANの指標。 Inceptionモデルに左右されないメリットがあ る。→「低い方が良い」 FID (Freshet Inception Distance) 訓練済みInceptionモデルの出力層における特 徴量で見たときの、本物-偽物間の2乗距離。 ただのL2距離ではなく、平均や共分散行列で 計算。 →「低いほうが良い」。直感的にはL2距離に 似ている。Inception scoreは本物の分布を見 ないのでその欠陥を補うために使われる。
実験結果 すべてのデータ、評価指標に対してSkrGANが一番良かった 他のGAN補足 1. DCGAN:多くのGANの雛形となった元祖 2. ACGAN:DCGANにクラスラベル、Dに画像分類を入れたConditional GAN。SNGANやSAGAN、BigGANの祖先。
3. WGAN:Dにリプシッツ連続の制約を入れ、損失関数をWasserstein距離にしたGAN。モード崩壊が(ほぼ)起きな い。GPではなくWeight Clip版。 4. PGGAN:低→高解像度と段階的に訓練するGAN。速度・安定性、高解像度に強み。4つの中では結果がまとも。 眼底 (6432枚) 胸部X線 (5863枚) 肺CT (267枚) 脳MRI (147枚) ↑画像数が少ないとDCGAN, ACGAN, WGANが悪すぎ
実験結果 eがSkrGAN。非常に高画質 特にCTスキャン(一番上)では 他のGANが明らかにおかしい (脊髄に違和感がある) DRIVEという糖尿病性網膜症の 血管のセグメンテーションタスク でのパフォーマンス。 DRIVEはtrain/testが20枚ずつ SEN=TP/(TP+FN)
SkrGANで2000枚生成し 生成されたスケッチをラベルとして利用 (スケッチをラベルとして使っていい?pseudo-label的な発想?)
まとめ スケッチによる「ガイド」を入れ、noise→imageのGANを、 noise→image + image→imageのタスクに分解したのが SkrGAN。データ数が少ない+ラベルがなくてもうまくいく。 最初にスケッチを作るというのは、人間と同じなので発想が とてもわかりやすい(私見)
PGGAN+pix2pixなので、GANの割に訓練は安定しそう(私 見) スケッチ(線画)が重要なのは、イラストでも変わりないの でSkrGANでお絵かきしたら楽しそう(私見) Data Augmentationとして使えるかは、そのタスクにおいて スケッチがPseudo labelingとしてどの程度有効か、では? (私見)