Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた検定(補講) (1) — Welch 検定 / Other Tests Using...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Kenji Saito
PRO
January 18, 2024
Business
0
130
R を用いた検定(補講) (1) — Welch 検定 / Other Tests Using R (1) - Welch Test
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第9回で使用したスライドです。
Kenji Saito
PRO
January 18, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
アナログAI からの逃走とメタ・ネイチャーポジティブ / Escape from Analog AI, and Meta-Nature Positive
ks91
PRO
0
4
AI 前提社会におけるトラスト / Trust in an AI-Driven Society
ks91
PRO
0
14
非営利組織の起業/発表と総括 / Starting up a Nonprofit Organization, Presentation and Summary
ks91
PRO
0
57
自己開発 / Self-Development
ks91
PRO
1
22
あなたは何によって憶えられたいですか? / What Do You Want to be Remembered for?
ks91
PRO
0
28
ボランティアと理事会 / Volunteers and Board of Directors
ks91
PRO
0
48
メタ・ネイチャーポジティブへの道 / The Path to Meta Nature Positive
ks91
PRO
0
35
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 3 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 3
ks91
PRO
0
52
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 2 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 2
ks91
PRO
0
87
Other Decks in Business
See All in Business
それでも、変えていくーエンタープライズでビジネスと_開発をつなぐアジャイル奮闘記などから学んだAgile Leadership
junki
1
170
サステナビリティレポート2025
hamayacorp
0
200
メドピアグループ紹介資料
medpeer_recruit
10
150k
スタートアップ調査:女性起業家を取り巻く課題と解決策
mpower_partners
PRO
0
580
株式会社ネオキャリア_採用ピッチ資料_20260128
neo_recruit
0
490
会社説明資料
xinghr
0
200
AI浅慮の時代における「考える」と「視点」、そして「創造性」
masayamoriofficial
1
2k
Mercari-Fact-book_jp
mercari_inc
7
180k
Sreake事業部説明資料
3shake
0
430
BlueWX_Introduction
amo0502
0
410
【Progmat】Monthly-ST-Market-Report-2026-Jan.
progmat
0
320
株式会社Oxxx Culture Deck
oxxxinc
0
670
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
Tell your own story through comics
letsgokoyo
1
810
Abbi's Birthday
coloredviolet
1
4.8k
Scaling GitHub
holman
464
140k
Designing for humans not robots
tammielis
254
26k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Docker and Python
trallard
47
3.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Leo the Paperboy
mayatellez
4
1.4k
Transcript
generated by Stable Diffusion XL v1.0 2023 9 R (
) (1) — Welch (WBS) 2023 9 R ( ) (1) — Welch — 2024-01 – p.1/10
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 9 R ( ) (1) — Welch —
2024-01 – p.2/10
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 11 R ( ) (1) — 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 9 R ( ) (1) — Welch — 2024-01 – p.3/10
t Welch R t.test() Welch Welch 2023 9 R (
) (1) — Welch — 2024-01 – p.4/10
2 t ( ) (1/2) 2 ( ) xA −
xB (1) : (2) : σ ( ) σ sp sp = s2 A (nA − 1) + s2 B (nB − 1) nA + nB − 2 (R var() ) nA + nB − 2 t Welch A B (µA = µB ) A B (µA = µB ) 2023 9 R ( ) (1) — Welch — 2024-01 – p.5/10
2 t ( ) (2/2) xA − xB Student µA
= µB t = (xA − xB ) − (µA − µB ) sp 1 nA + 1 nB = xA − xB sp 1 nA + 1 nB (t ) t dfp = nA + nB − 2 t ( ) t0.05 (dfp ) t0.05 (dfp ) < |t| (P < 0.05) 2023 9 R ( ) (1) — Welch — 2024-01 – p.6/10
Welch t t = xA − xB s2 A nA
+ s2 B nB ( ) v . . . v ≈ ( s2 A nA + s2 B nB )2 s4 A n2 A (nA−1) + s4 B n2 B (nB−1) R 2023 9 R ( ) (1) — Welch — 2024-01 – p.7/10
( ) - (Shapiro-Wilk test) - (Anderson-Darling test for normality)
- (Kolmogorov-Smirnov test for normality) ( ) ( ) (Bartlett’s test for homogeneity of variances) 2023 9 R ( ) (1) — Welch — 2024-01 – p.8/10
.txt A /B g <- read.table(" .txt", header=T) colnames(g) <-
c(" ", " ") sampleA <- g$ sampleB <- g$ # ( ) shapiro.test(x=sampleA) shapiro.test(x=sampleB) # ( ) samples <- c(sampleA, sampleB) group_factor <- factor(rep(c("A", "B"), c(length(sampleA), length(sampleB)))) bartlett.test(formula=samples~group_factor) # Welch (t.test() ) ( Welch ) t.test(sampleA, sampleB) 2023 9 R ( ) (1) — Welch — 2024-01 – p.9/10
2023 9 R ( ) (1) — Welch — 2024-01
– p.10/10