Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた検定(補講) (1) — Welch 検定 / Other Tests Using...
Search
Kenji Saito
PRO
January 18, 2024
Business
0
130
R を用いた検定(補講) (1) — Welch 検定 / Other Tests Using R (1) - Welch Test
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第9回で使用したスライドです。
Kenji Saito
PRO
January 18, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
デジタルトランスフォーメーションと民主主義 / Digital Transformation and Democracy
ks91
PRO
0
6
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
18
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
75
ロボットを雰囲気(ヴァイブ)でプログラミングするこどもたち / Children Vibe-Programming Robots
ks91
PRO
0
23
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 3
ks91
PRO
0
31
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 2
ks91
PRO
0
34
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
160
未来へのフォワードキャスト / Forward Cast to the Future
ks91
PRO
0
88
発表と総括 / Presentations and Summary
ks91
PRO
0
62
Other Decks in Business
See All in Business
CREによる顧客のキャッチアップを加速する仕組み作り / Creating a mechanism to accelerate customer catch-up through CRE
woody_kawagoe
1
260
Findy社0901イベント資料(note株式会社)
yamane
1
1.1k
【DearOne】Dear Newest Member
hrm
2
11k
エンジニア採用を引き継いだあなたへ〜EMが採用に向き合うとき、まず知っておきたいこと〜
kkun_22
PRO
1
550
タケウチグループRecruit
takeuchigroup
0
7.7k
NewsPicks Expert説明資料 / NewsPicks Expert Introduction
mimir
0
17k
【エンジニア職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
5.6k
株式会社デイトラ FACT BOOK 2025
daytra
0
320
IT子会社のグローバルトレンド #scrumsendai / Global Trends in IT Subsidiaries
kyonmm
PRO
3
1.1k
Rakus Career Introduction
rakus_career
0
390k
会社紹介資料 / ProfileBook
gpol
4
47k
Corporate Story (GA technologies Co., Ltd.)
gatechnologies
0
190
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
For a Future-Friendly Web
brad_frost
180
9.9k
Become a Pro
speakerdeck
PRO
29
5.5k
Documentation Writing (for coders)
carmenintech
74
5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
RailsConf 2023
tenderlove
30
1.2k
Designing Experiences People Love
moore
142
24k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Transcript
generated by Stable Diffusion XL v1.0 2023 9 R (
) (1) — Welch (WBS) 2023 9 R ( ) (1) — Welch — 2024-01 – p.1/10
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 9 R ( ) (1) — Welch —
2024-01 – p.2/10
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 11 R ( ) (1) — 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 9 R ( ) (1) — Welch — 2024-01 – p.3/10
t Welch R t.test() Welch Welch 2023 9 R (
) (1) — Welch — 2024-01 – p.4/10
2 t ( ) (1/2) 2 ( ) xA −
xB (1) : (2) : σ ( ) σ sp sp = s2 A (nA − 1) + s2 B (nB − 1) nA + nB − 2 (R var() ) nA + nB − 2 t Welch A B (µA = µB ) A B (µA = µB ) 2023 9 R ( ) (1) — Welch — 2024-01 – p.5/10
2 t ( ) (2/2) xA − xB Student µA
= µB t = (xA − xB ) − (µA − µB ) sp 1 nA + 1 nB = xA − xB sp 1 nA + 1 nB (t ) t dfp = nA + nB − 2 t ( ) t0.05 (dfp ) t0.05 (dfp ) < |t| (P < 0.05) 2023 9 R ( ) (1) — Welch — 2024-01 – p.6/10
Welch t t = xA − xB s2 A nA
+ s2 B nB ( ) v . . . v ≈ ( s2 A nA + s2 B nB )2 s4 A n2 A (nA−1) + s4 B n2 B (nB−1) R 2023 9 R ( ) (1) — Welch — 2024-01 – p.7/10
( ) - (Shapiro-Wilk test) - (Anderson-Darling test for normality)
- (Kolmogorov-Smirnov test for normality) ( ) ( ) (Bartlett’s test for homogeneity of variances) 2023 9 R ( ) (1) — Welch — 2024-01 – p.8/10
.txt A /B g <- read.table(" .txt", header=T) colnames(g) <-
c(" ", " ") sampleA <- g$ sampleB <- g$ # ( ) shapiro.test(x=sampleA) shapiro.test(x=sampleB) # ( ) samples <- c(sampleA, sampleB) group_factor <- factor(rep(c("A", "B"), c(length(sampleA), length(sampleB)))) bartlett.test(formula=samples~group_factor) # Welch (t.test() ) ( Welch ) t.test(sampleA, sampleB) 2023 9 R ( ) (1) — Welch — 2024-01 – p.9/10
2023 9 R ( ) (1) — Welch — 2024-01
– p.10/10