Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ネットワークグラフを作成する
Search
kunou
July 06, 2018
Technology
0
62
ネットワークグラフを作成する
kunou
July 06, 2018
Tweet
Share
More Decks by kunou
See All by kunou
GANについて
kunou
0
450
AIか何かについて.pdf
kunou
0
40
Pythonを書いていておーマジかーと感じたあれこれ
kunou
1
730
Rubyで機械学習してみた
kunou
1
1.2k
ZIP!!
kunou
0
190
zip
kunou
0
520
Make Mouse
kunou
0
650
RubyのProcのあれをこうしました
kunou
0
100
esm lt Clojure like threading macro
kunou
0
460
Other Decks in Technology
See All in Technology
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2.3k
AI駆動開発の実践とその未来
eltociear
2
500
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
250
AI との良い付き合い方を僕らは誰も知らない
asei
0
270
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
150
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
130
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
160
Claude Skillsの テスト業務での活用事例
moritamasami
1
110
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
210
AI with TiDD
shiraji
1
300
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
100
Featured
See All Featured
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
91
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Darren the Foodie - Storyboard
khoart
PRO
0
2k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Amusing Abliteration
ianozsvald
0
72
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Balancing Empowerment & Direction
lara
5
820
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
33
Transcript
ωοτϫʔΫάϥϑΛੜ ͢Δ(ClojureͰ) 2018/6/15 ITS-training-camp
ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ) ͜͏͍͏ਤΛੜ͠·͢
ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ) ͜͏͍͏ਤΛੜ͠·͢
DEMO ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ίʔυશମ (ns gen-network.core) (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as
str]) (require '[loom.graph :as lg]) (require '[loom.io :as lio]) (def data-text “data.txt") (def keywords ["a" "b" "c" "d"]) (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) (defn word-relation [key list] (->> list (filter (fn [words] (some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) (defn main [] (->> keywords (reduce (fn [accum keyword] (concat accum (word-relation keyword data-list))) []) )) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) (main) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ $ cat data.txt a, b c, d a, b
a, b a, b a, e c, d a, e a, d c, b e, d ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ) JavaͷΫϥεΛΠϯϙʔτ
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) clojure.stringΛ͑ΔΑ͏ʹ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) FileReaderΛॳظԽ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) BuffReaderΛॳظԽ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ߦ͝ͱʹ͚Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ߦΛ``,``Ͱ͚ͯVectorʹ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) (word-relation "a" data-list) => (["a" "b" 4] ["a" "e" 2] ["a" "d" 1]) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => (["a" "b"] ["a" "b"] ["a" "b"] ["a" "b"] ["a" "e"] ["a" "e"] ["a" "d"]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => (("b") ("b") ("b") ("b") ("e") ("e") ("d")) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => ("b" "b" "b" "b" "e" "e" "d") ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => {"b" ["b" "b" "b" "b"], "e" ["e" "e"], "d" ["d"]} ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => (["a" "b" 4] ["a" "e" 2] ["a" "d" 1]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) => (["a" "b" 4] ["a" "e" 2] ["a" "d" 1] [“b" "a" 4] ["b" "c" 1] ["c" "d" 2] ["c" "b" 1] [“d" "c" 2] ["d" "a" 1] ["d" "e" 1]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) άϥϑσʔλΛ࡞ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) ஔΛࢦఆͯ͠ඳը ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ίʔυશମ (ns gen-network.core) (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as
str]) (require '[loom.graph :as lg]) (require '[loom.io :as lio]) (def data-text “data.txt") (def keywords ["a" "b" "c" "d"]) (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) (defn word-relation [key list] (->> list (filter (fn [words] (some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) (defn main [] (->> keywords (reduce (fn [accum keyword] (concat accum (word-relation keyword data-list))) []) )) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) (main) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
·ͱΊ ͪΐͬͱͨ͠πʔϧΛ࡞Δͱ͖ͳͲɺؔܕݴޠΛ͏ͱ͘εο ΩϦ͔͚·͢ɻ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
·ͱΊ ͪΐͬͱͨ͠πʔϧΛ࡞Δͱ͖ͳͲɺؔܕݴޠΛ͏ͱ͘εο ΩϦ͔͚·͢ɻ RubyPythonΛͬͯ͘ॻ͚·͚͢ͲͶɻ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)