Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hands-on-Machine-Learning Book Review
Search
Len Kim
March 01, 2019
Programming
1
24
Hands-on-Machine-Learning Book Review
책을 읽고 배울 수 있었던 점에 대해서 간략히 정리
Len Kim
March 01, 2019
Tweet
Share
More Decks by Len Kim
See All by Len Kim
오늘도 여러분의 API 는 안녕하신가요? - 김정규(인프콘2023)
lenkim
0
190
객체지향의 사실과오해 책 리뷰
lenkim
1
110
Other Decks in Programming
See All in Programming
Android 16KBページサイズ対応をはじめからていねいに
mine2424
0
520
CIを整備してメンテナンスを生成AIに任せる
hazumirr
0
100
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
290
Python型ヒント完全ガイド 初心者でも分かる、現代的で実践的な使い方
mickey_kubo
1
240
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
1
480
20250708_JAWS_opscdk
takuyay0ne
2
130
副作用と戦う PHP リファクタリング ─ ドメインイベントでビジネスロジックを解きほぐす
kajitack
2
310
マッチングアプリにおけるフリックUIで苦労したこと
yuheiito
0
220
Claude Code派?Gemini CLI派? みんなで比較LT会!_20250716
junholee
1
640
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
2
22k
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
16
5.8k
SQLアンチパターン第2版 データベースプログラミングで陥りがちな失敗とその対策 / Intro to SQL Antipatterns 2nd
twada
PRO
25
7.4k
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
3.9k
How GitHub (no longer) Works
holman
314
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Code Review Best Practice
trishagee
69
19k
Bash Introduction
62gerente
613
210k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
What's in a price? How to price your products and services
michaelherold
246
12k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Transcript
Hands-On Machine Learning ӣӏ
What is Machine Learning?
Goal • Machine Learning 의 정의를 내릴 수 있다. •
Machine Learning 프로젝트에 대한 프로세스를 이 해할 수 있다. (특히, CNN이 머신러닝의 처음이자 끝인줄 알고 있었던 사람들) • Machine Learning의 프로젝트 분류를 이해할 수 있다. • Machine Learning 프로젝트의 도전과제를 이해할 수 있다.
ӝദ ٣ੋ ѐߊ ߓನ ੌ߈ੋ ѐߊ ۽ࣁझ Ӓۧݶ, Machine Learning
۽ંח যڃ ۽ࣁझܳ о ө? ޙઁোҳ ӏ ࢿ (ࣛܖ࣌) ಣо ۠ட ML ѐߊ ۽ࣁझ ࣻࢎ೦ য়ର࠙ࢳ ݠन۞ ঌҊ્ܻ ള۲ ઁػ ؘఠ
분류
그렇다면 ML의 종류는 무슨 기준으로 나눌수 있을까?
지도, 비지도, 준지도, 강화 학습 ৡۄੋ णҗ ߓ ण ࢎ۹
ӝ߈ णҗ ݽ؛ ӝ߈ ण
ؘఠ ࣘী... ࢎۈ хة ೞী ള۲ೞח Ѫੋ Ӓۧ ঋ Ѫੋ
بण ࠺بण
ࢎۈ хة ೞী ള۲ೞח Ѫੋ Ӓۧ ঋ Ѫੋ ળبण ъചण
पदрਵ۽ ੋ णਸ ೞח ইצ ޙઁো ҳ (ࣛܖ࣌) ಣо ۠ட
য়ର࠙ ࢳ ݠन۞ ঌҊ્ܻ ള۲ ߓ ण ৡۄੋ ण ޙઁো ҳ (ࣛܖ࣌) ಣо ۠ட য়ର࠙ ࢳ ݠन۞ ঌҊ્ܻ ള۲ प೯ ߂ ঌҊܻ ્ ण ઁػ ؘఠ पदр ࢜۽ ؘఠ ઁػ ؘఠ
ױࣽೞѱ ঌҊ ח ؘఠ ನੋ৬ ࢜ ؘఠ ನੋܳ ࠺Үೞח Ѫੋ
ইפݶ ള۲ ؘఠࣇী җٜ ۢ ಁఢਸ ߊѼೞৈ ஏ ݽ؛ਸ ݅٘ח ࢎ۹ ӝ߈ ण ݽ؛ ӝ߈ ण
Machine Learning ਃ ب җઁ
?
나쁜 데이터
나쁜 데이터 충분하지 않은 양의 훈련 데이터 대표성 없는 훈련
데이터 낮은 품질의 데이터 관련 없는 특성 훈련 데이터 과대 적합 훈련 데이터 과소 적합
결론
아! 마지막 하나만 더! ҕबহۿ ݽ؛ҙஏೠѪਸрࣗചೠѪੑפрࣗചח࢜۽ࢠীੌ߈ ঋਸѪэࠛਃೠࣁࠗࢎ೦ਸઁѢೞחѪੑפӒ۞աযڃؘఠܳߡܻҊ যڃؘఠܳթӡೞӝਤ೧оਸ೧ঠפٜܳযࢶഋݽ؛ؘఠ оӔࠄਵ۽ࢶഋҊࢠҗࢶࢎѢܻחޖदೡࣻחۄҊо פ
֙ীߊೠਬݺೠ֤ޙীࢲؘ࠺٘ਘಌ%BWJE8PMQFSUTחؘఠীҙ೧ ৮߷ೞѱযڃоبೞঋਵݶೠݽ؛ਸܲݽ؛ࠁࢶഐೡӔѢоহਸࠁ णפܳҕबহ/P'SFF-VODI /'- ۿۄפযڃؘఠ ࣇীࢲחࢶഋݽ؛оੜٜযݏؘ݅ܲఠࣇীࢲחन҃ݎੜٜয ݏणפ҃ೞӝী؊ੜݏਸѢۄҊࠁೡࣻחݽ؛হणפ ۿܴਬېػਬੑפ যڃݽ؛୭ࢶੋഛपইחਬੌೠߑߨ ݽٚݽ؛ਸಣо೧ࠁחѪࡺੑפѪࠛоמೞӝٸޙীपীࢲחؘ ఠীҙ೧ఋೠоਸೞҊೠݽ؛ݻо݅ಣоפٜܳযрױೠ সীࢲחӏઁࣻળনೠࢶഋݽ؛ਸಣоೞҊ ࠂೠޙઁۄݶৈ۞о न҃ݎਸಣоפ