Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Scale Postgres - Automation, Tuning & Sh...
Search
Lukas Fittl
June 23, 2020
Technology
0
560
How to Scale Postgres - Automation, Tuning & Sharding
Talk at Postgres Vision 2020
Lukas Fittl
June 23, 2020
Tweet
Share
More Decks by Lukas Fittl
See All by Lukas Fittl
What's Missing for Postgres Monitoring
lfittl
0
190
A Map For Monitoring PostgreSQL
lfittl
2
360
Monitoring Postgres at Scale
lfittl
1
360
Monitoring PostgreSQL at Scale
lfittl
4
220
Postgres Performance for App Developers
lfittl
2
240
GraphQL ❤ PostgreSQL -- P.S. aka BeatQL
lfittl
1
550
Hacking PostgreSQL to Gain SQL Parsing Superpowers
lfittl
1
490
PostgreSQL at a Web Startup
lfittl
3
560
Advanced pg_stat_statements: Filtering, Regression Testing & more
lfittl
4
710
Other Decks in Technology
See All in Technology
CVE alive
ennael
PRO
0
310
DockerのマルチプラットフォームイメージをGitHub Actionsでビルドして公開する際に、参考にしたドキュメントと便利だったツール
iwamot
3
120
ドメインと向き合う - 旅行予約編
hidenorigoto
4
500
Renovate ではじめる運用レスなライブラリ更新 / 令和最新版 他人に自慢したいヤバいCI/CD LT会 @ yabaibuki.dev #2
ponkio_o
PRO
1
120
C# 13 / .NET 9 の新機能 (RC 1 時点)
nenonaninu
0
1k
RAGの性能を評価しよう
kurahara
1
270
【shownet.conf_】コンピューティング資源を統合した分散コンテナ基盤の進化
shownet
PRO
0
270
Assisted reorganization of data structures
ennael
PRO
0
190
【shownet.conf_】革新と伝統を融合したファシリティ
shownet
PRO
0
220
FastAPIでのasync defとdefの使い分け
takashi1029
6
1.7k
【shownet.conf_】放送局とShowNetが共創する、未来の放送システム ~Media over IP 特別企画の裏側~
shownet
PRO
0
240
いまからでも遅くない! コンテナでWebアプリケーションを 動かしてみよう(2-1)WebAPI座学
nomu
0
130
Featured
See All Featured
Producing Creativity
orderedlist
PRO
340
39k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
5
170
Making Projects Easy
brettharned
114
5.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
327
21k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
278
13k
Automating Front-end Workflow
addyosmani
1365
200k
Designing for humans not robots
tammielis
248
25k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
2
210
Into the Great Unknown - MozCon
thekraken
29
1.4k
Clear Off the Table
cherdarchuk
91
320k
Atom: Resistance is Futile
akmur
261
25k
Code Review Best Practice
trishagee
62
16k
Transcript
@LukasFittl How to Scale Postgres: Automation, Tuning & Sharding
@LukasFittl
Scaling Postgres
Scaling Postgres
Automation Handling 100s of database servers
Consistency is key
Infrastructure as Code
Postgres Infrastructure as Code
Demo: Managing Configuration using Terraform
Cloud PaaS Synchronized Configuration Terraform
Cloud PaaS Synchronized Configuration Terraform Access Control (Roles, pg_hba.conf) Terraform
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in Connection Pooling Manual Setup
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in ? Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in pg_auto_failover Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
pg_auto_failover: Simple, automated failover
pg_auto_failover
Demo: Postgres HA using pg_auto_failover
Tuning Making The Most Of Your Database Server
work_mem tuning
Out Of Memory vs Operations Spill To Disk
Temporary Files Written pg_stat_statements.temp_blks_written pg_stat_database.temp_bytes
Temporary Files Written (Per Query) log_temp_files = 0 Jan 20
09:18:58pm PST 28847 LOG: temporary file: path "base/pgsql_ pgsql_tmp28847.9", size 50658332 Jan 20 09:18:58pm PST 28847 STATEMENT: WITH servers AS ( SELECT …
When Sorts Spill To Disk, Increase work_mem However, be aware
of OOMs!
When you get a lot of Out of Memory Errors
Reduce work_mem!
VACUUM
autovacuum => SELECT pid, query FROM pg_stat_activity WHERE query LIKE
'autovacuum: %'; 10469 | autovacuum: VACUUM ANALYZE public.schema_columns 12848 | autovacuum: VACUUM public.replication_follower_stats 28626 | autovacuum: VACUUM public.schema_index_stats | (to prevent wraparound) (3 rows) pg_stat_activity
autovacuum pg_stat_progress_vacuum relid: OID of the table phase: current VACUUM
phase heap_blks_total: Heap Blocks Total heap_blks_scanned: Heap Blocks Scanned heap_blks_vacuumed: Heap Blocks Vacuumed …
Reduce autovacuum_vacuum_cost_delay To Increase VACUUM Speed 80 MB/s 8 MB/s
(20ms) (2ms) PG 12+ Older PG Default OS / Disk Reads
Use Table Partitioning For Append-Only + Delete Workloads (e.g. Timeseries)
Checkpoints
Data Directory WAL WAL WAL Buffer Cache Checkpointer WAL Checkpoints
Are Important For I/O Tuning
16688 LOG: checkpoint starting: xlog xlog = WAL exceeded max_wal_size,
checkpoint has to happen quickly time = checkpoint_timeout reached, checkpoint impact spread over time
Checkpoint Statistics pg_stat_bgwriter checkpoints_timed: # of scheduled checkpoints checkpoints_req: #
of requested checkpoints 1. Time Between Checkpoints 2. % of Timed Checkpoints
Increase max_wal_size / Reduce checkpoint_timeout To Have More Timed Checkpoints
(but be careful with recovery times)
Tune checkpoint_completion_target To Control I/O Impact of Timed Checkpoints (Often
0.9 is a good value, but depends on I/O Subsystem & Workload)
Demo: Postgres 13 WAL Monitoring
Sharding Scaling Beyond The Limits of a Single Server
Citus: Extension for Sharding Postgres
Select from table Coordinator Table metadata Select from table_1001 Select
from table_1003 Select from table_1002 Select from table_1004 Data node N Data node 2 Data node 1 Table_1001 Table_1003 Table_1002 Table_1004 Each node PostgreSQL with Citus installed 1 shard = 1 PostgreSQL table Sharding data across multiple nodes
Demo: Hyperscale (Citus) on Kubernetes with Azure Arc
Thank you!
[email protected]
@LukasFittl