Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Scale Postgres - Automation, Tuning & Sh...
Search
Lukas Fittl
June 23, 2020
Technology
0
660
How to Scale Postgres - Automation, Tuning & Sharding
Talk at Postgres Vision 2020
Lukas Fittl
June 23, 2020
Tweet
Share
More Decks by Lukas Fittl
See All by Lukas Fittl
What's Missing for Postgres Monitoring
lfittl
0
260
A Map For Monitoring PostgreSQL
lfittl
2
390
Monitoring Postgres at Scale
lfittl
1
450
Monitoring PostgreSQL at Scale
lfittl
4
270
Postgres Performance for App Developers
lfittl
2
310
GraphQL ❤ PostgreSQL -- P.S. aka BeatQL
lfittl
1
610
Hacking PostgreSQL to Gain SQL Parsing Superpowers
lfittl
1
600
PostgreSQL at a Web Startup
lfittl
3
600
Advanced pg_stat_statements: Filtering, Regression Testing & more
lfittl
4
790
Other Decks in Technology
See All in Technology
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
190
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.2k
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
390
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
AI との良い付き合い方を僕らは誰も知らない
asei
0
270
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
470
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
250
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
障害対応訓練、その前に
coconala_engineer
0
200
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
280
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
66
Ruling the World: When Life Gets Gamed
codingconduct
0
100
Side Projects
sachag
455
43k
Site-Speed That Sticks
csswizardry
13
1k
Amusing Abliteration
ianozsvald
0
71
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
The Curious Case for Waylosing
cassininazir
0
190
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Are puppies a ranking factor?
jonoalderson
0
2.4k
Transcript
@LukasFittl How to Scale Postgres: Automation, Tuning & Sharding
@LukasFittl
Scaling Postgres
Scaling Postgres
Automation Handling 100s of database servers
Consistency is key
Infrastructure as Code
Postgres Infrastructure as Code
Demo: Managing Configuration using Terraform
Cloud PaaS Synchronized Configuration Terraform
Cloud PaaS Synchronized Configuration Terraform Access Control (Roles, pg_hba.conf) Terraform
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in Connection Pooling Manual Setup
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in ? Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in pg_auto_failover Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
pg_auto_failover: Simple, automated failover
pg_auto_failover
Demo: Postgres HA using pg_auto_failover
Tuning Making The Most Of Your Database Server
work_mem tuning
Out Of Memory vs Operations Spill To Disk
Temporary Files Written pg_stat_statements.temp_blks_written pg_stat_database.temp_bytes
Temporary Files Written (Per Query) log_temp_files = 0 Jan 20
09:18:58pm PST 28847 LOG: temporary file: path "base/pgsql_ pgsql_tmp28847.9", size 50658332 Jan 20 09:18:58pm PST 28847 STATEMENT: WITH servers AS ( SELECT …
When Sorts Spill To Disk, Increase work_mem However, be aware
of OOMs!
When you get a lot of Out of Memory Errors
Reduce work_mem!
VACUUM
autovacuum => SELECT pid, query FROM pg_stat_activity WHERE query LIKE
'autovacuum: %'; 10469 | autovacuum: VACUUM ANALYZE public.schema_columns 12848 | autovacuum: VACUUM public.replication_follower_stats 28626 | autovacuum: VACUUM public.schema_index_stats | (to prevent wraparound) (3 rows) pg_stat_activity
autovacuum pg_stat_progress_vacuum relid: OID of the table phase: current VACUUM
phase heap_blks_total: Heap Blocks Total heap_blks_scanned: Heap Blocks Scanned heap_blks_vacuumed: Heap Blocks Vacuumed …
Reduce autovacuum_vacuum_cost_delay To Increase VACUUM Speed 80 MB/s 8 MB/s
(20ms) (2ms) PG 12+ Older PG Default OS / Disk Reads
Use Table Partitioning For Append-Only + Delete Workloads (e.g. Timeseries)
Checkpoints
Data Directory WAL WAL WAL Buffer Cache Checkpointer WAL Checkpoints
Are Important For I/O Tuning
16688 LOG: checkpoint starting: xlog xlog = WAL exceeded max_wal_size,
checkpoint has to happen quickly time = checkpoint_timeout reached, checkpoint impact spread over time
Checkpoint Statistics pg_stat_bgwriter checkpoints_timed: # of scheduled checkpoints checkpoints_req: #
of requested checkpoints 1. Time Between Checkpoints 2. % of Timed Checkpoints
Increase max_wal_size / Reduce checkpoint_timeout To Have More Timed Checkpoints
(but be careful with recovery times)
Tune checkpoint_completion_target To Control I/O Impact of Timed Checkpoints (Often
0.9 is a good value, but depends on I/O Subsystem & Workload)
Demo: Postgres 13 WAL Monitoring
Sharding Scaling Beyond The Limits of a Single Server
Citus: Extension for Sharding Postgres
Select from table Coordinator Table metadata Select from table_1001 Select
from table_1003 Select from table_1002 Select from table_1004 Data node N Data node 2 Data node 1 Table_1001 Table_1003 Table_1002 Table_1004 Each node PostgreSQL with Citus installed 1 shard = 1 PostgreSQL table Sharding data across multiple nodes
Demo: Hyperscale (Citus) on Kubernetes with Azure Arc
Thank you!
[email protected]
@LukasFittl