Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Scale Postgres - Automation, Tuning & Sh...
Search
Lukas Fittl
June 23, 2020
Technology
0
660
How to Scale Postgres - Automation, Tuning & Sharding
Talk at Postgres Vision 2020
Lukas Fittl
June 23, 2020
Tweet
Share
More Decks by Lukas Fittl
See All by Lukas Fittl
What's Missing for Postgres Monitoring
lfittl
0
250
A Map For Monitoring PostgreSQL
lfittl
2
390
Monitoring Postgres at Scale
lfittl
1
450
Monitoring PostgreSQL at Scale
lfittl
4
270
Postgres Performance for App Developers
lfittl
2
310
GraphQL ❤ PostgreSQL -- P.S. aka BeatQL
lfittl
1
600
Hacking PostgreSQL to Gain SQL Parsing Superpowers
lfittl
1
600
PostgreSQL at a Web Startup
lfittl
3
600
Advanced pg_stat_statements: Filtering, Regression Testing & more
lfittl
4
790
Other Decks in Technology
See All in Technology
eBPFとwaruiBPF
sat
PRO
4
2.5k
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
3
400
著者と読み解くAIエージェント現場導入の勘所 Lancers TechBook#2
smiyawaki0820
12
5.9k
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
710
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
580
直接メモリアクセス
koba789
0
280
世界最速級 memcached 互換サーバー作った
yasukata
0
330
チーリンについて
hirotomotaguchi
2
230
乗りこなせAI駆動開発の波
eltociear
1
990
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
13
4.8k
技術以外の世界に『越境』しエンジニアとして進化を遂げる 〜Kotlinへの愛とDevHRとしての挑戦を添えて〜
subroh0508
1
380
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
310
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
A Modern Web Designer's Workflow
chriscoyier
698
190k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Being A Developer After 40
akosma
91
590k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
KATA
mclloyd
PRO
32
15k
Bash Introduction
62gerente
615
210k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Why Our Code Smells
bkeepers
PRO
340
57k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
93
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Transcript
@LukasFittl How to Scale Postgres: Automation, Tuning & Sharding
@LukasFittl
Scaling Postgres
Scaling Postgres
Automation Handling 100s of database servers
Consistency is key
Infrastructure as Code
Postgres Infrastructure as Code
Demo: Managing Configuration using Terraform
Cloud PaaS Synchronized Configuration Terraform
Cloud PaaS Synchronized Configuration Terraform Access Control (Roles, pg_hba.conf) Terraform
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in Connection Pooling Manual Setup
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in ? Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in pg_auto_failover Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
pg_auto_failover: Simple, automated failover
pg_auto_failover
Demo: Postgres HA using pg_auto_failover
Tuning Making The Most Of Your Database Server
work_mem tuning
Out Of Memory vs Operations Spill To Disk
Temporary Files Written pg_stat_statements.temp_blks_written pg_stat_database.temp_bytes
Temporary Files Written (Per Query) log_temp_files = 0 Jan 20
09:18:58pm PST 28847 LOG: temporary file: path "base/pgsql_ pgsql_tmp28847.9", size 50658332 Jan 20 09:18:58pm PST 28847 STATEMENT: WITH servers AS ( SELECT …
When Sorts Spill To Disk, Increase work_mem However, be aware
of OOMs!
When you get a lot of Out of Memory Errors
Reduce work_mem!
VACUUM
autovacuum => SELECT pid, query FROM pg_stat_activity WHERE query LIKE
'autovacuum: %'; 10469 | autovacuum: VACUUM ANALYZE public.schema_columns 12848 | autovacuum: VACUUM public.replication_follower_stats 28626 | autovacuum: VACUUM public.schema_index_stats | (to prevent wraparound) (3 rows) pg_stat_activity
autovacuum pg_stat_progress_vacuum relid: OID of the table phase: current VACUUM
phase heap_blks_total: Heap Blocks Total heap_blks_scanned: Heap Blocks Scanned heap_blks_vacuumed: Heap Blocks Vacuumed …
Reduce autovacuum_vacuum_cost_delay To Increase VACUUM Speed 80 MB/s 8 MB/s
(20ms) (2ms) PG 12+ Older PG Default OS / Disk Reads
Use Table Partitioning For Append-Only + Delete Workloads (e.g. Timeseries)
Checkpoints
Data Directory WAL WAL WAL Buffer Cache Checkpointer WAL Checkpoints
Are Important For I/O Tuning
16688 LOG: checkpoint starting: xlog xlog = WAL exceeded max_wal_size,
checkpoint has to happen quickly time = checkpoint_timeout reached, checkpoint impact spread over time
Checkpoint Statistics pg_stat_bgwriter checkpoints_timed: # of scheduled checkpoints checkpoints_req: #
of requested checkpoints 1. Time Between Checkpoints 2. % of Timed Checkpoints
Increase max_wal_size / Reduce checkpoint_timeout To Have More Timed Checkpoints
(but be careful with recovery times)
Tune checkpoint_completion_target To Control I/O Impact of Timed Checkpoints (Often
0.9 is a good value, but depends on I/O Subsystem & Workload)
Demo: Postgres 13 WAL Monitoring
Sharding Scaling Beyond The Limits of a Single Server
Citus: Extension for Sharding Postgres
Select from table Coordinator Table metadata Select from table_1001 Select
from table_1003 Select from table_1002 Select from table_1004 Data node N Data node 2 Data node 1 Table_1001 Table_1003 Table_1002 Table_1004 Each node PostgreSQL with Citus installed 1 shard = 1 PostgreSQL table Sharding data across multiple nodes
Demo: Hyperscale (Citus) on Kubernetes with Azure Arc
Thank you!
[email protected]
@LukasFittl