Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Locality Sensitive Hashing at Lyst
Search
Maciej Kula
July 24, 2015
Programming
0
1.4k
Locality Sensitive Hashing at Lyst
Description of the intuition behind locality sensitive hashing and its application at Lyst.
Maciej Kula
July 24, 2015
Tweet
Share
More Decks by Maciej Kula
See All by Maciej Kula
Implicit and Explicit Recommender Systems
maciejkula
0
2.9k
Binary Embeddings For Efficient Ranking
maciejkula
0
700
Rust for Python Native Extensions
maciejkula
0
470
Hybrid Recommender Systems at PyData Amsterdam 2016
maciejkula
5
2.8k
Recommendations under sparsity
maciejkula
1
370
Metadata Embeddings for User and Item Cold-start Recommendations
maciejkula
2
990
Other Decks in Programming
See All in Programming
AIコーディングエージェント(Gemini)
kondai24
0
240
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.2k
TestingOsaka6_Ozono
o3
0
170
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
2
110
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
190
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
150
tparseでgo testの出力を見やすくする
utgwkk
2
240
ZOZOにおけるAI活用の現在 ~モバイルアプリ開発でのAI活用状況と事例~
zozotech
PRO
9
5.7k
AIエージェントの設計で注意するべきポイント6選
har1101
4
260
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
410
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
350
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Optimizing for Happiness
mojombo
379
70k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Why Our Code Smells
bkeepers
PRO
340
57k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Become a Pro
speakerdeck
PRO
31
5.7k
What's in a price? How to price your products and services
michaelherold
246
13k
Transcript
Speeding up search with locality sensitive hashing. by Maciej Kula
Hi, I’m Maciej Kula. @maciej_kula
We collect the world of fashion into a customisable shopping
experience.
Given a point, find other points close to it. Nearest
neighbour search… 4
None
At Lyst we use it for… 1.) Image Search 2.)
Recommendations 6
Convert image to points in space (vectors) & use nearest
neighbour search to get similar images. 1. Image Search (-0.3, 2.1, 0.5)
Super useful for deduplication & search.
Convert products and users to points in space & use
nearest neighbour search to get related products for the user. 2. Recommendations user = (-0.3, 2.1, 0.5) product = (5.2, 0.3, -0.5)
Great, but…
11 80 million We have images
12 9 million We have products
Exhaustive nearest neighbour search is too slow.
Locality sensitive hashing to the rescue! Use a hash table.
Pick a hash function that puts similar points in the same bucket. Only search within the bucket.
We use Random Projection Forests
Partition by splitting on random vectors
Partition by splitting on random vectors
Partition by splitting on random vectors
Partition by splitting on random vectors
Partition by splitting on random vectors
Points to note Keep splitting until the nodes are small
enough. Median splits give nicely balanced trees. Build a forest of trees.
Why do we need a forest? Some partitions split the
true neighbourhood of a point. Because partitions are random, other trees will not repeat the error. Build more trees to trade off query speed for precision.
LSH in Python annoy, Python wrapper for C++ code. LSHForest,
part of scikit-learn FLANN, an auto-tuning ANN index
But… LSHForest is slow. FLANN is a pain to deploy.
annoy is great, but can’t add points to an existing index.
So we wrote our own.
github.com/lyst/rpforest pip install rpforest
rpforest Quite fast. Allows adding new items to the index.
Does not require us to store points in memory.
We use it in conjunction with PostgreSQL Send the query
point to the ANN index. Get ANN row ids back Plug them into postgres for filtering Final scoring done in postgres using C extensions.
Side note: postgres is awesome. Arrays & custom functions in
C
Gives us a fast and reliable ANN service 100x speed-up
with 0.6 10-NN precision Allows us to serve real-time results All on top of a real database.
thank you @maciej_kula