Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Thoughts About Normal and Abnormal Data (PyCon ...
Search
Markus H
October 27, 2017
Technology
0
13k
Thoughts About Normal and Abnormal Data (PyCon UK 2017)
Speaker notes at
https://markusholtermann.eu/2017/10/thoughts-about-normal-and-abnormal-data/
Markus H
October 27, 2017
Tweet
Share
More Decks by Markus H
See All by Markus H
🐍 ❤️ 🦀 — Python loves Rust
markush
0
220
Knock! Knock! Who's There?
markush
0
63
An Introduction To Kubernetes ☸
markush
0
88
Writing Safe Database Migrations (DjangoCon Europe 2021)
markush
0
14k
A Pony On The Move: How Migrations Work In Django 🐎
markush
0
13k
All Hands on Deck — Handling Security Issues
markush
0
13k
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon UK 2019)
markush
0
56
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon Australia 2019)
markush
1
200
Logging Rethought 2: The Actions of Frank Taylor Jr. (DjangoCon Europe 2019)
markush
0
13k
Other Decks in Technology
See All in Technology
Understanding_Thread_Tuning_for_Inference_Servers_of_Deep_Models.pdf
lycorptech_jp
PRO
0
150
改めてAWS WAFを振り返る~業務で使うためのポイント~
masakiokuda
1
150
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
4
190
KubeCon + CloudNativeCon Japan 2025 に行ってきた! & containerd の新機能紹介
honahuku
0
120
解析の定理証明実践@Lean 4
dec9ue
1
210
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
3
630
mrubyと micro-ROSが繋ぐロボットの世界
kishima
3
390
AIとともに進化するエンジニアリング / Engineering-Evolving-with-AI_final.pdf
lycorptech_jp
PRO
0
140
怖くない!はじめてのClaude Code
shinya337
0
320
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
460
React開発にStorybookとCopilotを導入して、爆速でUIを編集・確認する方法
yu_kod
1
110
「Chatwork」の認証基盤の移行とログ活用によるプロダクト改善
kubell_hr
1
240
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
BBQ
matthewcrist
89
9.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Making Projects Easy
brettharned
116
6.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Code Review Best Practice
trishagee
69
18k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
500
Writing Fast Ruby
sferik
628
62k
Transcript
Thoughts About Normal and Abnormal Data Markus Holtermann @m_holtermann markusholtermann.eu
@m_holtermann I am Markus Holtermann • Senior Software Engineer at
LaterPay • Django Core Developer
@m_holtermann How do we store our data?
@m_holtermann Files CC-BY-NC 2.0 by Tim Gee https://flic.kr/p/rZm63
@m_holtermann Document Stores CC-BY-SA 4.0 by Susan Gerbic https://commons.wikimedia.org/wiki/File%3AArchive_Room.JPG
@m_holtermann Copyright Geek Batman https://www.youtube.com/watch?v=gPDx_IwdYMY
@m_holtermann Name Home planet Gender Padmé Naboo Female Luke Tatooine
Male Leia Alderaan, Naboo Female
@m_holtermann First Normal Form (1NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Name Home planet Gender 3 Leia Alderaan Female
3 Leia Naboo Male Update Anomalies
@m_holtermann Second Normal Form (2NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo ??? Dagobah Insert Anomalies
@m_holtermann Deletion Anomalies PersonID Planet Name 1 Naboo 2 Tatooine
3 Alderaan 3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann Third Normal Form (3NF)
@m_holtermann PlanetID Name Water 10 Naboo 85% 11 Tatooine 1%
12 Alderaan 78% 13 Dagobah 88% PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female PersonID PlanetID 1 10 2 11 3 10 3 12
@m_holtermann Database normalization is great!
@m_holtermann Always?
@m_holtermann Yet Another Wiki
@m_holtermann Page + PageID Name Slug Revision + RevisionID PageID
Text Date Database Schema
@m_holtermann Task 1: Fetch a single page and its current
revision
@m_holtermann Task 2: Fetch all page titles and the date
of their current revision
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.page_id = revision.page_id WHERE page.slug = 'some-slug' ORDER BY revision.date DESC LIMIT 1;
Task 2: Fetch all pages SELECT page.name, last_revs.date FROM page
INNER JOIN ( SELECT revision.page_id, MAX(revision.date) date FROM revision GROUP BY revision.page_id ) last_revs ON page.page_id = last_revs.page_id;
@m_holtermann Benchmark Environment • Intel i7-6600U, 2.60GHz • 8 GB
Memory • PostgreSQL 9.6.5 • 10k pages, 6m revisions
@m_holtermann Task 1: Fetch a single page Concurrent queries 10
Pages per connection 1000 Queries per page 10 Queries total 100000
@m_holtermann Task 2: Fetch all pages Concurrent queries 1 Queries
per connection 10 Queries total 10
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Rae Knowler https://speakerdeck.com/bellisk/unsafe-at-any-speed-pycon-uk-26th-october-2017
@m_holtermann Database Schema Page + PageID Name Slug LastRevision Revision
+ RevisionID PageID Text Date
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id WHERE page.slug = 'some-slug';
Task 2: Fetch all pages SELECT page.name, revision.date FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id;
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Conclusion
Thanks Markus Holtermann @m_holtermann markusholtermann.eu