Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Thoughts About Normal and Abnormal Data (PyCon ...
Search
Markus H
October 27, 2017
Technology
0
13k
Thoughts About Normal and Abnormal Data (PyCon UK 2017)
Speaker notes at
https://markusholtermann.eu/2017/10/thoughts-about-normal-and-abnormal-data/
Markus H
October 27, 2017
Tweet
Share
More Decks by Markus H
See All by Markus H
🐍 ❤️ 🦀 — Python loves Rust
markush
0
250
Knock! Knock! Who's There?
markush
0
68
An Introduction To Kubernetes ☸
markush
0
110
Writing Safe Database Migrations (DjangoCon Europe 2021)
markush
0
14k
A Pony On The Move: How Migrations Work In Django 🐎
markush
0
13k
All Hands on Deck — Handling Security Issues
markush
0
14k
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon UK 2019)
markush
0
65
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon Australia 2019)
markush
1
210
Logging Rethought 2: The Actions of Frank Taylor Jr. (DjangoCon Europe 2019)
markush
0
13k
Other Decks in Technology
See All in Technology
最近の生成 AI の活用事例紹介
asei
1
100
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.1k
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
190
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
特別捜査官等研修会
nomizone
0
540
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
570
障害対応訓練、その前に
coconala_engineer
0
190
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2k
AI駆動開発の実践とその未来
eltociear
1
480
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
230
ActiveJobUpdates
igaiga
1
310
Featured
See All Featured
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
71
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Statistics for Hackers
jakevdp
799
230k
Tell your own story through comics
letsgokoyo
0
750
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Deep Space Network (abreviated)
tonyrice
0
20
Writing Fast Ruby
sferik
630
62k
Fireside Chat
paigeccino
41
3.8k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
A Soul's Torment
seathinner
1
2k
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Transcript
Thoughts About Normal and Abnormal Data Markus Holtermann @m_holtermann markusholtermann.eu
@m_holtermann I am Markus Holtermann • Senior Software Engineer at
LaterPay • Django Core Developer
@m_holtermann How do we store our data?
@m_holtermann Files CC-BY-NC 2.0 by Tim Gee https://flic.kr/p/rZm63
@m_holtermann Document Stores CC-BY-SA 4.0 by Susan Gerbic https://commons.wikimedia.org/wiki/File%3AArchive_Room.JPG
@m_holtermann Copyright Geek Batman https://www.youtube.com/watch?v=gPDx_IwdYMY
@m_holtermann Name Home planet Gender Padmé Naboo Female Luke Tatooine
Male Leia Alderaan, Naboo Female
@m_holtermann First Normal Form (1NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Name Home planet Gender 3 Leia Alderaan Female
3 Leia Naboo Male Update Anomalies
@m_holtermann Second Normal Form (2NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo ??? Dagobah Insert Anomalies
@m_holtermann Deletion Anomalies PersonID Planet Name 1 Naboo 2 Tatooine
3 Alderaan 3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann Third Normal Form (3NF)
@m_holtermann PlanetID Name Water 10 Naboo 85% 11 Tatooine 1%
12 Alderaan 78% 13 Dagobah 88% PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female PersonID PlanetID 1 10 2 11 3 10 3 12
@m_holtermann Database normalization is great!
@m_holtermann Always?
@m_holtermann Yet Another Wiki
@m_holtermann Page + PageID Name Slug Revision + RevisionID PageID
Text Date Database Schema
@m_holtermann Task 1: Fetch a single page and its current
revision
@m_holtermann Task 2: Fetch all page titles and the date
of their current revision
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.page_id = revision.page_id WHERE page.slug = 'some-slug' ORDER BY revision.date DESC LIMIT 1;
Task 2: Fetch all pages SELECT page.name, last_revs.date FROM page
INNER JOIN ( SELECT revision.page_id, MAX(revision.date) date FROM revision GROUP BY revision.page_id ) last_revs ON page.page_id = last_revs.page_id;
@m_holtermann Benchmark Environment • Intel i7-6600U, 2.60GHz • 8 GB
Memory • PostgreSQL 9.6.5 • 10k pages, 6m revisions
@m_holtermann Task 1: Fetch a single page Concurrent queries 10
Pages per connection 1000 Queries per page 10 Queries total 100000
@m_holtermann Task 2: Fetch all pages Concurrent queries 1 Queries
per connection 10 Queries total 10
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Rae Knowler https://speakerdeck.com/bellisk/unsafe-at-any-speed-pycon-uk-26th-october-2017
@m_holtermann Database Schema Page + PageID Name Slug LastRevision Revision
+ RevisionID PageID Text Date
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id WHERE page.slug = 'some-slug';
Task 2: Fetch all pages SELECT page.name, revision.date FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id;
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Conclusion
Thanks Markus Holtermann @m_holtermann markusholtermann.eu