Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Thoughts About Normal and Abnormal Data (PyCon ...
Search
Markus H
October 27, 2017
Technology
0
13k
Thoughts About Normal and Abnormal Data (PyCon UK 2017)
Speaker notes at
https://markusholtermann.eu/2017/10/thoughts-about-normal-and-abnormal-data/
Markus H
October 27, 2017
Tweet
Share
More Decks by Markus H
See All by Markus H
🐍 ❤️ 🦀 — Python loves Rust
markush
0
190
Knock! Knock! Who's There?
markush
0
58
An Introduction To Kubernetes ☸
markush
0
76
Writing Safe Database Migrations (DjangoCon Europe 2021)
markush
0
14k
A Pony On The Move: How Migrations Work In Django 🐎
markush
0
13k
All Hands on Deck — Handling Security Issues
markush
0
13k
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon UK 2019)
markush
0
48
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon Australia 2019)
markush
1
180
Logging Rethought 2: The Actions of Frank Taylor Jr. (DjangoCon Europe 2019)
markush
0
13k
Other Decks in Technology
See All in Technology
Microsoft Azure全冠になってみた ~アレを使い倒した者が試験を制す!?~/Obtained all Microsoft Azure certifications Those who use "that" to the full will win the exam! ?
yuj1osm
1
110
AWS re:Invent 2024 ふりかえり
kongmingstrap
0
130
コンテナセキュリティのためのLandlock入門
nullpo_head
2
320
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
250
10個のフィルタをAXI4-Streamでつなげてみた
marsee101
0
160
TSKaigi 2024 の登壇から広がったコミュニティ活動について
tsukuha
0
160
生成AIのガバナンスの全体像と現実解
fnifni
1
180
生成AIをより賢く エンジニアのための RAG入門 - Oracle AI Jam Session #20
kutsushitaneko
4
210
非機能品質を作り込むための実践アーキテクチャ
knih
2
630
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
470
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
180
私なりのAIのご紹介 [2024年版]
qt_luigi
1
120
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
32
6.3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Optimizing for Happiness
mojombo
376
70k
Making the Leap to Tech Lead
cromwellryan
133
9k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
For a Future-Friendly Web
brad_frost
175
9.4k
It's Worth the Effort
3n
183
28k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Transcript
Thoughts About Normal and Abnormal Data Markus Holtermann @m_holtermann markusholtermann.eu
@m_holtermann I am Markus Holtermann • Senior Software Engineer at
LaterPay • Django Core Developer
@m_holtermann How do we store our data?
@m_holtermann Files CC-BY-NC 2.0 by Tim Gee https://flic.kr/p/rZm63
@m_holtermann Document Stores CC-BY-SA 4.0 by Susan Gerbic https://commons.wikimedia.org/wiki/File%3AArchive_Room.JPG
@m_holtermann Copyright Geek Batman https://www.youtube.com/watch?v=gPDx_IwdYMY
@m_holtermann Name Home planet Gender Padmé Naboo Female Luke Tatooine
Male Leia Alderaan, Naboo Female
@m_holtermann First Normal Form (1NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Name Home planet Gender 3 Leia Alderaan Female
3 Leia Naboo Male Update Anomalies
@m_holtermann Second Normal Form (2NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo ??? Dagobah Insert Anomalies
@m_holtermann Deletion Anomalies PersonID Planet Name 1 Naboo 2 Tatooine
3 Alderaan 3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann Third Normal Form (3NF)
@m_holtermann PlanetID Name Water 10 Naboo 85% 11 Tatooine 1%
12 Alderaan 78% 13 Dagobah 88% PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female PersonID PlanetID 1 10 2 11 3 10 3 12
@m_holtermann Database normalization is great!
@m_holtermann Always?
@m_holtermann Yet Another Wiki
@m_holtermann Page + PageID Name Slug Revision + RevisionID PageID
Text Date Database Schema
@m_holtermann Task 1: Fetch a single page and its current
revision
@m_holtermann Task 2: Fetch all page titles and the date
of their current revision
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.page_id = revision.page_id WHERE page.slug = 'some-slug' ORDER BY revision.date DESC LIMIT 1;
Task 2: Fetch all pages SELECT page.name, last_revs.date FROM page
INNER JOIN ( SELECT revision.page_id, MAX(revision.date) date FROM revision GROUP BY revision.page_id ) last_revs ON page.page_id = last_revs.page_id;
@m_holtermann Benchmark Environment • Intel i7-6600U, 2.60GHz • 8 GB
Memory • PostgreSQL 9.6.5 • 10k pages, 6m revisions
@m_holtermann Task 1: Fetch a single page Concurrent queries 10
Pages per connection 1000 Queries per page 10 Queries total 100000
@m_holtermann Task 2: Fetch all pages Concurrent queries 1 Queries
per connection 10 Queries total 10
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Rae Knowler https://speakerdeck.com/bellisk/unsafe-at-any-speed-pycon-uk-26th-october-2017
@m_holtermann Database Schema Page + PageID Name Slug LastRevision Revision
+ RevisionID PageID Text Date
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id WHERE page.slug = 'some-slug';
Task 2: Fetch all pages SELECT page.name, revision.date FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id;
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Conclusion
Thanks Markus Holtermann @m_holtermann markusholtermann.eu