Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Thoughts About Normal and Abnormal Data (PyCon ...
Search
Markus H
October 27, 2017
Technology
0
13k
Thoughts About Normal and Abnormal Data (PyCon UK 2017)
Speaker notes at
https://markusholtermann.eu/2017/10/thoughts-about-normal-and-abnormal-data/
Markus H
October 27, 2017
Tweet
Share
More Decks by Markus H
See All by Markus H
🐍 ❤️ 🦀 — Python loves Rust
markush
0
230
Knock! Knock! Who's There?
markush
0
63
An Introduction To Kubernetes ☸
markush
0
88
Writing Safe Database Migrations (DjangoCon Europe 2021)
markush
0
14k
A Pony On The Move: How Migrations Work In Django 🐎
markush
0
13k
All Hands on Deck — Handling Security Issues
markush
0
13k
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon UK 2019)
markush
0
57
Logging Rethought 2: The Actions of Frank Taylor Jr. (PyCon Australia 2019)
markush
1
200
Logging Rethought 2: The Actions of Frank Taylor Jr. (DjangoCon Europe 2019)
markush
0
13k
Other Decks in Technology
See All in Technology
ホリスティックテスティングの右側も大切にする 〜2つの[はか]る〜 / Holistic Testing: Right Side Matters
nihonbuson
PRO
0
570
AI時代の経営、Bet AI Vision #BetAIDay
layerx
PRO
1
1.7k
多様なニーズに応える Movable Type ラインナップ 全紹介
masakah
0
130
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
330
LIFF CLIとngrokを使ったLIFF/LINEミニアプリのお手軽実機確認
diggymo
0
230
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
230
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
110
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
720
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
830
Lambda management with ecspresso and Terraform
ijin
2
120
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
670
風が吹けばWHOISが使えなくなる~なぜWHOIS・RDAPはサーバー証明書のメール認証に使えなくなったのか~
orangemorishita
15
5.4k
Featured
See All Featured
Music & Morning Musume
bryan
46
6.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Code Review Best Practice
trishagee
69
19k
Gamification - CAS2011
davidbonilla
81
5.4k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing Experiences People Love
moore
142
24k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.5k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Raft: Consensus for Rubyists
vanstee
140
7k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Writing Fast Ruby
sferik
628
62k
Transcript
Thoughts About Normal and Abnormal Data Markus Holtermann @m_holtermann markusholtermann.eu
@m_holtermann I am Markus Holtermann • Senior Software Engineer at
LaterPay • Django Core Developer
@m_holtermann How do we store our data?
@m_holtermann Files CC-BY-NC 2.0 by Tim Gee https://flic.kr/p/rZm63
@m_holtermann Document Stores CC-BY-SA 4.0 by Susan Gerbic https://commons.wikimedia.org/wiki/File%3AArchive_Room.JPG
@m_holtermann Copyright Geek Batman https://www.youtube.com/watch?v=gPDx_IwdYMY
@m_holtermann Name Home planet Gender Padmé Naboo Female Luke Tatooine
Male Leia Alderaan, Naboo Female
@m_holtermann First Normal Form (1NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Name Home planet Gender 3 Leia Alderaan Female
3 Leia Naboo Male Update Anomalies
@m_holtermann Second Normal Form (2NF)
@m_holtermann PersonID Name Home planet Gender 1 Padmé Naboo Female
2 Luke Tatooine Male 3 Leia Alderaan Female 3 Leia Naboo Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann PersonID Planet Name 1 Naboo 2 Tatooine 3 Alderaan
3 Naboo ??? Dagobah Insert Anomalies
@m_holtermann Deletion Anomalies PersonID Planet Name 1 Naboo 2 Tatooine
3 Alderaan 3 Naboo PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female
@m_holtermann Third Normal Form (3NF)
@m_holtermann PlanetID Name Water 10 Naboo 85% 11 Tatooine 1%
12 Alderaan 78% 13 Dagobah 88% PersonID Name Gender 1 Padmé Female 2 Luke Male 3 Leia Female PersonID PlanetID 1 10 2 11 3 10 3 12
@m_holtermann Database normalization is great!
@m_holtermann Always?
@m_holtermann Yet Another Wiki
@m_holtermann Page + PageID Name Slug Revision + RevisionID PageID
Text Date Database Schema
@m_holtermann Task 1: Fetch a single page and its current
revision
@m_holtermann Task 2: Fetch all page titles and the date
of their current revision
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.page_id = revision.page_id WHERE page.slug = 'some-slug' ORDER BY revision.date DESC LIMIT 1;
Task 2: Fetch all pages SELECT page.name, last_revs.date FROM page
INNER JOIN ( SELECT revision.page_id, MAX(revision.date) date FROM revision GROUP BY revision.page_id ) last_revs ON page.page_id = last_revs.page_id;
@m_holtermann Benchmark Environment • Intel i7-6600U, 2.60GHz • 8 GB
Memory • PostgreSQL 9.6.5 • 10k pages, 6m revisions
@m_holtermann Task 1: Fetch a single page Concurrent queries 10
Pages per connection 1000 Queries per page 10 Queries total 100000
@m_holtermann Task 2: Fetch all pages Concurrent queries 1 Queries
per connection 10 Queries total 10
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Rae Knowler https://speakerdeck.com/bellisk/unsafe-at-any-speed-pycon-uk-26th-october-2017
@m_holtermann Database Schema Page + PageID Name Slug LastRevision Revision
+ RevisionID PageID Text Date
Task 1: Fetch a single page SELECT * FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id WHERE page.slug = 'some-slug';
Task 2: Fetch all pages SELECT page.name, revision.date FROM page
INNER JOIN revision ON page.last_revision_id = revision.revision_id;
@m_holtermann Task 1: Fetch a single page
@m_holtermann Task 2: Fetch all pages
@m_holtermann Conclusion
Thanks Markus Holtermann @m_holtermann markusholtermann.eu