Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlowと機械学習の今
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kei Hirata
February 21, 2016
Technology
0
820
TensorFlowと機械学習の今
TensorFlowと機械学習の今
Kei Hirata
February 21, 2016
Tweet
Share
More Decks by Kei Hirata
See All by Kei Hirata
今からはじめるボードゲーム解析
masuwo3
0
1.4k
ホワイトジグソーパズル を解く(WIP)
masuwo3
0
980
Other Decks in Technology
See All in Technology
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
490
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
330
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
220
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
120
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
520
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
Agile Leadership Summit Keynote 2026
m_seki
1
660
AI駆動開発を事業のコアに置く
tasukuonizawa
1
340
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
SchooでVue.js/Nuxtを技術選定している理由
yamanoku
3
170
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Technical Leadership for Architectural Decision Making
baasie
2
250
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
New Earth Scene 8
popppiees
1
1.5k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Discover your Explorer Soul
emna__ayadi
2
1.1k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Done Done
chrislema
186
16k
Agile that works and the tools we love
rasmusluckow
331
21k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
Transcript
%FWFMPQFST*0 & ฏాܓ "84ίϯαϧςΟϯά෦ Ϋϥεϝιου ⡥$MBTTNFUIPE *OD ݄ 5FOTPS'MPXͱػցֶशͷࠓ
⡥$MBTTNFUIPE *OD ࣗݾհ ໊લ : ฏా ܓ (@masuwo3) ॴଐ :
σʔλੳνʔϜ ݱࡏ : 20155݄ΑΓΫϥεϝιουೖࣾ աڈ : ಛॿڭɺSEɺITߨࢣɺetc... ML : ݚڀࣨͰ͔ͬͨ͡ఔ
⡥$MBTTNFUIPE *OD
⡥$MBTTNFUIPE *OD ࠓ͓͢͠Δ͜ͱ ਂֶशͱ5FOTPS'MPXʹ͍ͭͯɺ ͕ࣗ͜Ε·ͰʹֶΜͰ͖ͨ͜ͱΛɺ ͬ͘͟Γͱ͠·͢ɻ
⡥$MBTTNFUIPE *OD ΞδΣϯμ w ਂֶशʹ͍ͭͯͷ֓ཁ w 5FOTPS'MPXͷ࠷ۙͷಈ w ਂֶशͷࣄྫʹ͍ͭͯ %FFQ2/FUXPSL
ਂֶश
⡥$MBTTNFUIPE *OD ਂֶशͷ֓ཁ w ਂֶशͱͳʹ͔ʁ w ଟ͔ΒͳΔχϡʔϥϧωοτϫʔΫʹΑΔֶश
⡥$MBTTNFUIPE *OD w χϡʔϥϧωοτϫʔΫͱʁ w ਆܦࡉ๔ͷಈ͖Λ࠶ݱ͢ΔͨΊʹ࡞ΒΕͨϞσϧ w ݱࡏύʔηϓτϩϯϞσϧΛ༻͍ͨܭࢉωοτϫʔΫશൠ χϡʔϥϧωοτϫʔΫͷ͓͞Β͍
x1 x2 x3 w3 w2 w1 u y y = u ( w1x1 + w2x2 + ... )
⡥$MBTTNFUIPE *OD χϡʔϥϧωοτϫʔΫͷ͓͞Β͍ w χϡʔϥϧωοτϫʔΫʹ͓͚Δֶश w ֶशύʔηϓτϩϯͷॏΈΛߋ৽ͯ͠ߦ͏ w
ޡࠩؔΛ࠷খͱ͢ΔॏΈΛ୳ࡧతʹٻΊΔ x1 x2 x3 u y w1 w2 w3
⡥$MBTTNFUIPE *OD χϡʔϥϧωοτϫʔΫͷ͓͞Β͍ w ύʔηϓτϩϯͷू߹ֶशϞσϧ
⡥$MBTTNFUIPE *OD w ଟωοτϫʔΫͷݶք w Ҏ্ͷωοτϫʔΫͰֶश͕҆ఆ͠ͳ͍ w $//ͳͲɺҰ෦ͷख๏Ͱޭ w ͳͥࠓ·ͰଟԽͰ͖ͳ͔ͬͨͷ͔ʁ
w ޯফࣦ w ଟͷ߹ɺೖྗʹۙͮ͘΄Ͳޡ͕ࠩগͳ͘ͳΔ w ݁Ռͱͯ͠ɺֶश͕҆ఆͤͣɺਫ਼্͕͠ͳ͍ ଟωοτϫʔΫͷ
⡥$MBTTNFUIPE *OD ਂֶशͷొ w ଟωοτϫʔΫʹΑΔֶश͕࠶ w ͖͔͚ͬ%FFQ#FMJFG/FUXPSL w 3#.Λ༻͍ͯஈ֊తʹ//Λߏங w
ͳͥͰ͖ΔΑ͏ʹͳͬͨͷ͔ʁ w ஈ֊తʹ//Λߏங͢Δ͜ͱͰɺॳظΛ҆ఆԽ w ଟ//ʹ͕ू·Δ w ݱࡏ༷ʑͳख๏ͰফࣦΛճආ͍ͯ͠Δ
⡥$MBTTNFUIPE *OD ਂֶशͷಛ w ෳࡶԽ͢ΔϞσϧ w HPPH-F/FU w ֶशʹ͔͔Δܭࢉίετ͕രൃ
w ख๏ͷݕূ͕ࠔ
5FOTPS'MPX
⡥$MBTTNFUIPE *OD 5FOTPS'MPXʹ͍ͭͯ w (PPHMFͷػցֶशϥΠϒϥϦ w %FFQ-FBSOJOHҎ߱ w 1ZUIPO w
$6%" 2015/6/9 2015/11/20 2013/10/20 caffe v0.1 chainer ެ։ TensorFlow ެ։ …..
⡥$MBTTNFUIPE *OD w ॊೈੑ w ػցֶशͷϞσϧΛॊೈʹهड़Ͱ͖Δ w /FVSBM/FUXPSLʹݶఆ͠ͳ͍ w ϙʔλϏϦςΟ
w ڥʹ߹ΘͤͯܭࢉॲཧΛߦ͏ w $16(16 ϥοϓτοϓαʔόͳͲ w ݚڀՌͱͷ࿈݁ w ݚڀՌͷݕূΛߦ͍͘͢ w ϓϩμΫτʹస༻͘͢͠ 5FOTPS'MPXͷಛ ެ͔ࣜΒ
⡥$MBTTNFUIPE *OD 5FOTPS'MPXʹ͓͚Δܭࢉॲཧ w 5FOTPS'MPXܭࢉΛάϥϑߏͰදݱ͢Δ Y ˎ ʴ Z
C 8
⡥$MBTTNFUIPE *OD 5FOTPSͱ0QFSBUJPO σʔλTensor ܭࢉॲཧOperation 5FOTPS 5FOTPS op 5FOTPS
5FOTPS
⡥$MBTTNFUIPE *OD 5FOTPSʹ͍ͭͯ ֊0ͷςϯιϧ (εΧϥ) ֊1ͷςϯιϧ (ϕΫτϧ) ֊2ͷςϯιϧ (ߦྻ)
֊3ͷςϯιϧ < ʜ> << ʜ> < ʜ> < ʜ> ʜ> <<< ʜ> ʜ> << ʜ> ʜ> << ʜ> ʜ> ʜ> B B<> B<><> B<><><>
⡥$MBTTNFUIPE *OD 4FTTJPOʹ͍ͭͯ w ܭࢉॲཧϑΣΠζ %FpOF3VO Define Run •
ܭࢉͷάϥϑϞσϧΛߏங͢ΔϑΣΠζ • ͜ͷ࣌Ͱܭࢉ݁Ռ֬ఆ͠ͳ͍ • άϥϑϞσϧ͔Βܭࢉ݁ՌΛ֬ఆ͢ΔϑΣΠζ • SessionʹϞσϧΛೖ͠ɺܭࢉ݁ՌΛಘΔ
⡥$MBTTNFUIPE *OD 5FOTPSͱ0QFSBUJPO w 4FTTJPO w όοΫΤϯυͷ$ ϞδϡʔϧͱͷίωΫγϣϯ w ࣮ࡍͷԋࢉ͜ͷ$
Ϟδϡʔϧ্ͰߦΘΕΔ w ܭࢉϦιʔε͕ࣗಈతʹׂΓͯΒΕΔ Y ˎ ʴ Z C 8 cpu:0 gpu:0
⡥$MBTTNFUIPE *OD 0QUJNJ[FSʹ͍ͭͯ w ଛࣦؔͷ࠷খԽ w ػցֶशͷʮֶशʯɺଛࣦؔͷ࠷খԽʹஔ͖͑ΒΕΔ w ࠷খͷ୳ࡧʹɺޯܭࢉ͕ඞཁ w
5FOTPS'MPXͰ0QUJNJ[FSͰֶशΛҰׅͯ͠ߦ͏
⡥$MBTTNFUIPE *OD 0QUJNJ[FSʹ͍ͭͯ w 0QUJNJTFS w ޯܭࢉ͔Β୳ࡧ·ͰΛҰׅͰߦ͏ w ޯͷܭࢉɺάϥϑϞσϧΛࣗಈతʹม w
ֶशख๏ʹ߹Θͤͯ෦ͷॏΈΛߋ৽͍ͯ͘͠ w άϥϑͰදݱ͞Εͨଛࣦ͔ؔΒɺࣗಈతʹֶशΛߦ͏
⡥$MBTTNFUIPE *OD 5FOTPS'MPXͷػೳ w 5FOTPS#PBSE ֶशաఔϞσϧͷߏΛՄࢹԽ
⡥$MBTTNFUIPE *OD 5FOTPS'MPXͷػೳ w 5FOTPS#PBSE ֶशաఔϞσϧͷߏΛՄࢹԽ
⡥$MBTTNFUIPE *OD ͳͥ.-ϥΠϒϥϦ͕ٻΊΒΕ͍ͯΔ͔ w ՌΛڞ༗͢Δ্Ͱͷڞ௨ج൫ͱͯ͠ w ͓ޓ͍ͷՌΛڞ༗͢Δ্Ͱͷڞ௨ݴޠͱͯ͠ w ϞσϧΛͲͷΑ͏ʹߏங͢Δ͔ϊϋϨϕϧ w
ࢼߦࡨޡʹΑͬͯ৽ͨͳൃݟΛظ w ίετͷղܾ w ΑΓޮతͳܭࢉॲཧͷͨΊͷج൫͕ඞཁ w (16Λ༻͍ͨฒྻͳԋࢉ w Ϛϧν(16ʹΑΔฒྻॲཧ w େنΫϥελʹΑΔεέʔϧΞτ
⡥$MBTTNFUIPE *OD %JTUSJCVUFE5FOTPS'MPX w ʮϚγϯΫϥελΛͭͷֶशػցͱͯ͠ѻ͏ʯ w 5FOTPS'MPXɺʮ͍͔ʹͯ͠ܭࢉΛࢄͤ͞Δ͔ʯΛॏࢹ w ෳϚγϯʹద༻ͨ͠ϥΠϒϥϦΛۙެ։༧ఆ
w ؾʹͳΔ w ֶशύϥϝʔλͷಉظ͕ϘτϧωοΫ w (PPHMFԆωοτϫʔΫʹΑͬͯߴԽΛ࣮ݱ w ಈ͘ڥ͔ͳΓݶΒΕͦ͏
%FFQ2-FBSOJOH
⡥$MBTTNFUIPE *OD %FFQ2/FUXPSL w %FFQ-FBSOJOH ڧԽֶश w Ϟχλը૾͔ΒήʔϜͷઓུΛֶश w ಉ͡ϞσϧͰ༷ʑͳήʔϜΛ߈ུ
w ήʔϜʹΑͬͯϓϩҎ্ͷՌ XXXOBUVSFDPNOBUVSFKPVSOBMWOGVMMOBUVSFIUNM
⡥$MBTTNFUIPE *OD ڧԽֶश w ڥͱΤʔδΣϯτ w ΤʔδΣϯτڥΛ֮͠ɺͦΕʹର͢ΔߦಈΛܾఆ w ߦಈʹΑͬͯརಘΛಘΒΕΔ ಘΒΕͳ͍߹͋Δ
w աڈͷܦݧ͔Βɺڥʹରͯ͠࠷దͳߦಈΛܾఆ͢Δ ΤʔδΣϯτ ڥ
⡥$MBTTNFUIPE *OD 2-FBSOJOH w ߦಈՁؔʹΑͬͯߦಈΛܾఆ͢Δ w ঢ়ଶɺߦಈΛೖྗͱ͢ΔߦಈՁؔΛٻΊΔ w աڈͷߦಈཤྺ͔ΒߦಈՁؔΛߋ৽͠ɺ࠷దͳߦಈΛܾ ఆ͢Δ
ߦಈঢ়ଶ T T T ʜ B B B ʜ
⡥$MBTTNFUIPE *OD 2/FUXPSL w ߦಈՁؔΛ//Ͱදݱ w ݹయతͳςʔϒϧؔͩͱঢ়ଶ͕രൃ͍͢͠ w ϝϞϦͷɺαϯϓϦϯάͷ w
//ʹΑͬͯߦಈՁؔΛۙࣅͤ͞Δ w ߦಈՁؔͷਫ਼//ͷදݱྗʹґଘ
⡥$MBTTNFUIPE *OD %FFQ2/FUXPSL w ΈࠐΈ// $// ΛධՁؔʹར༻ w ը໘ใΛঢ়ଶͱͯ͠ѻ͍ɺߦಈΛܾఆ͢Δ
⡥$MBTTNFUIPE *OD ࣮ݧ݁Ռ w "UBSJ7JEFP0MZNQJDT
⡥$MBTTNFUIPE *OD %2/ͷ໘ന͍ͱ͜Ζ w ΞΠσΞͱ͔ͯΓ͍͢ w 2/FUXPSLʹରͯ͠$//Λద༻ͯ͠Έͨ w ਂֶश͕ଞʹରͯ͠Өڹ͍ͯ͠Δ w
ಛྔͷࣗಈநग़ͱ͍͏ੑ࣭Λ͏·͘ར༻ w ಉҰͷֶशϞσϧ͔ΒɺϧʔϧͷҟͳΔήʔϜΛ߈ུ͢Δ w $//Λར༻͢Δ͜ͱͰɺΑΓ൚ͳڧԽֶशϞσϧ
⡥$MBTTNFUIPE *OD ·ͱΊ w ػցֶशͷࠓਂֶश w ͨͩ͠ɺະͩʹख๏ʹ͍ͭͯࢼߦࡨޡ w .-ϥΠϒϥϦ 5FOTPS'MPX
ͷొ w ૿େ͢Δܭࢉίετͷղܾ w ՌΛڞ༗͢ΔͨΊͷڞ௨ج൫ w ਂֶशͷՌଞͷػցֶशʹӨڹ
%FWFMPQFST*0 " ⡥$MBTTNFUIPE *OD #cmdevio2016 ͝੩ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ɻ ϒϩάޙ΄Ͳެ։͠·͢ɻ