Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習によるハイスループット 第一原理計算の代替の可能性
Search
Matlantis
February 08, 2024
Technology
0
270
機械学習によるハイスループット 第一原理計算の代替の可能性
日本化学会第103春季年会(2023)において、トヨタ自動車株式会社 山﨑久嗣様の発表資料です。
Matlantis
February 08, 2024
Tweet
Share
More Decks by Matlantis
See All by Matlantis
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
260
ACHEMA2024_High speed neural network for chemicals and materials discovery
matlantis
0
370
Matlantisが切り拓く新しい材料科学 -最新の機械学習力場と連携機能-
matlantis
0
1k
汎用原子レベルシミュレーター『Matlantis™』がもたらす素材・材料開発の未来 ~ AI駆動超高速計算が材料開発の世界を変える ~
matlantis
0
140
Applications and Challenges in Computational Materials Development using Atomistic Simulator Matlantis
matlantis
0
140
Matlantis - Million years of research acceleration with universal neural network potential-based SaaS
matlantis
0
760
汎用原子レベルシミュレータMatlantis 計算材料科学のMI活用と課題
matlantis
1
260
最新のAI技術を使った材料シミュレーションで材料研究現場に変革を
matlantis
0
780
汎用原子シミュレータMatlantis のご紹介
matlantis
0
350
Other Decks in Technology
See All in Technology
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
120
Making your applications cross-environment - OSCG 2024 NA
salaboy
0
180
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
870
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
The Rise of LLMOps
asei
5
1.2k
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
190
スクラム成熟度セルフチェックツールを作って得た学びとその活用法
coincheck_recruit
1
140
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
200
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
Python(PYNQ)がテーマのAMD主催のFPGAコンテストに参加してきた
iotengineer22
0
470
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
1.7k
Featured
See All Featured
A better future with KSS
kneath
238
17k
Optimizing for Happiness
mojombo
376
70k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Fireside Chat
paigeccino
34
3k
Gamification - CAS2011
davidbonilla
80
5k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
GraphQLとの向き合い方2022年版
quramy
43
13k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Code Review Best Practice
trishagee
64
17k
Become a Pro
speakerdeck
PRO
25
5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Designing for humans not robots
tammielis
250
25k
Transcript
機械学習によるハイスループット 第一原理計算の代替の可能性 1/36 2023.3.23 日本化学会 第103回春季年会 K401-2pm-04 15:00-15:30 「マテリアルズ・インフォマティクスの新潮流とその実践的」 トヨタ自動車
先端材料技術部 山崎久嗣
材料発見の時定数のミスマッチ 2/36 ビジネス競争と環境対応により、材料開発は短い期間での解決を要求される Joule 2,8,1410-1420,(2018)
例:全固体電池というブレークスルー 3/36 安全性と大容量化により、走行距離を延ばせる可能性
既存の電解液を超える伝導度を持つ固体電解質の発見 4/36 材料によるブレークスルーは必須
材料探索の戦略 5/36 材料探索は難しい 精度 汎用性 ★研究開発ターゲットにフォーカスして 徹底的に高精度に予測ができるようにする ★広範囲に未知材・仮想材をターゲットにブレークスルーを狙う 材料探索のターゲットとなるが学習データが活用できない 材料探索ターゲット
Matlantisとは? 6/36 PFCC:Preferred Computational Chemistory, JV:Joint Venture ENEOSとPFNのJVでPFCCが提供する原子レベルシミュレータ・クラウドサービス
Matlantisの位置づけ 7/36 第一原理計算並みの精度が出て、サイズの大きいものまで扱える
第一原理計算 古典力場 機械学習力場 モデル規模 原理 特徴 機械学習ポテンシャルとは? i r i2
r i3 原子 r i1 量子化学理論で電子分布を予測し、 原子間力を決定 原子核 電子e- + + ~1000原子 ・精度が最高 ・計算コスト大 ~100万原子 𝐹 = 𝒌(𝑟 − 𝒓𝟎 )2 𝒌:バネ定数 𝒓𝟎 :基準原子間距離 第一原理計算でデータベース構築 機械学習で原子間力を決定 ・精度そこそこだが 化学反応扱えない ・計算コスト小 推定: 数万原子 ・精度: 第一原理計 算に匹敵する可能性 ・化学反応扱える ・計算コスト中 第一原理計算でパラメータ決め 古典モデルで原子間力を決定 原子座標から 原子間力 を予測 原子 8/36
Matlantisとは? 9/36 材料探索の探索期間を大幅に短縮する方法の一つが計算による探索 手法 精度 時間 探索範囲 スケール 第一原理計算 高
長い 汎用性あり 小 古典MD 低 短い 汎用性なし 大 NNMD 高 短い 汎用性なし 大 Matlantis 高 短い 汎用性あり 中
Matlantisの中身とは? 10/36
ビッグデータ第一原理計算結果→独自のポテンシャル構築 11/36 *推定~千万の第一原理計算結果をトレーニングして機械学習ポテンシャル作成
従来の材料提案フロー 12/36 各プロセスで第一原理を用いた計算があり、材料提案まで期間が長い 構造生成 USPEX (VASP) 構造評価 VASP 特性評価 VASP-MD
BVS
トライした材料提案フロー 13/36 第一原理計算の部分をMatlantisで置き換えて実施 構造生成 Matlantis 構造評価 Matlantis 特性評価 Matlantis
構造生成 14/36 問題:遺伝的アルゴリズムが遅く材料探索が進まない 遺伝的アルゴリズム 豊田中研 大場様資料より 2週間で1構造しか生成できない!!
遺伝的アルゴリズムのプロセス 15/36 手法:第一原理計算をMatlantisで置き換え高速化 Matlantis
Matlantisによる高速化 16/36 結果:Matlantisを用いた高速化(2週間→1日)に成功! 既知(層状)構造を発見できた!! ・第一原理計算をMatlantisに置き換えて高速化 ・組成情報(LiCoO 2 )だけから既知(層状)構造を見つけられるか? LiCoO 2
本手法で生成した材料 Li5 AlCl8 Li7 CaCl9 新材料候補を生成!
Li-Zn-O-X 新規350組成/約18,000計算 17/36 新しい組成を計算するよりも分解エネルギーの計算が圧倒的に多い And (Li, Zn, O) –X (exclusive
no) ➔ 58 compounds H 32 3 Li 336 58 B 16 3 C 4 2 O 1390 58 Na 2 1 Si 4 1 P 94 13 S 12 2 K 6 2 Ti 48 4 V 3 1 Cr 6 2 Mn 12 1 Fe 134 11 Zn 228 58 Ge 34 5 As 10 2 Rb 10 2 Nb 70 8 Mo 8 1 Sn 18 1 Sb 1 1 ➔ 50 compounds ➔ 65spin config 母構造 Li 306 50 B 16 3 C 4 2 O 1220 50 Si 4 1 P 70 9 S 12 2 Ti 48 4 V 3 1 Cr 6 2 Mn 12 1 Fe 134 11 Zn 192 50 Ge 34 5 As 6 1 Nb 70 8 Sn 18 1 Sb 1 1 ドーパント Al3+ @ Zn2+ Ga3+ @ Zn2+ In3+ @ Zn2+ Sc3+ @ Zn2+ Y3+ @ Zn2+ Ti4+ @ Zn2+ Nb5+ @ Zn2+ 計2058 構造候補 (注:超構造) 49 x 7 x 6 = 2058 置換体作成 (相安定性評価) 乱数による固溶置換 新組成350程度 計49安定 構造候補 Or, Exclusive (Li, B, C, O, Si, P, S, Ti, V, Cr, Mn, Fe, Zn, Ge, As, Nb, Sn, Sb, dopants) 計9721安定構造候補 9721 spin配置を考慮して 15076件 相安定性評価のための計算
生成構造の安定性評価(構造評価) 18/36 分解生成物と分解エネルギーを評価する必要あり→第一原理計算 組成x 1 エネルギー E 凸包 全てのサンプルについて評価する必要がある 分解エネルギー
分解生成物 μ 1 0 1 μ 2 qhull 異常点対応
分解生成物の評価 19/36 分解生成化合物のエネルギー計算が必要 Li7 La3 Zr2 O12 7/2 Li2 O
+ 3/2 La2 O3 + 2 ZrO2 7/2 Li2 O + La2 Zr2 O7 + 1/2 La2 O3 2 Li2 ZrO3 + 3/2 La2 O3 + 3/2 Li2 O Li, Zr, La, O を含む化合物で組合せ→無数 ・・・・
生成した構造の安定評価結果 20/36 すべて第一原理計算を行っていたので、律速となっていた 分解エネルギー 0 eV 2539サンプル 0.1 eV以下 10,100サンプル
全計算 18,000計算
精度検証 21/36 全エネルギーの比較で第一原理計算と高精度で相関して使えそう!
スピード 22/36 本社スパコンの約70倍のスピード→年間1000万構造の計算が可能
データベース構築 23/36 手法:Matlantisを活用し、10年蓄積10万構造の結果を7日で再現 ▪Materials Project のVASPデータ ▪Matlantisの結果 不安定性=+0.1eV(赤)
活性化エネルギー評価 24/36
活性化エネルギー評価 25/36
活性化エネルギー評価 26/36 各メッシュで一点計算を行うため第一原理計算だと計算負荷大
活性化エネルギー評価 27/36 y = x 0 0.1 0.2 0.3 0.4
0.5 0.6 0.7 0 0.5 1 1.5 2 BVS結果(eV) Matlantis結果(eV) 活性化エネルギーの比較 BVS力場と比較するとMatlantisの結果の方が障壁エネルギーが高い傾向
結果 28/36 構造生成 構造評価 MD拡散解析 活性化障壁 精度 →DFT同等 →DFT同等 →DFT同等
↑BVSより精度 向上? 計算負荷 ↓大幅ダウン ↓大幅ダウン ↓大幅ダウン ↑BVSより少しア ップ 時間 12か月→1か月 12か月→1か月 1か月→7日間 5分→8分 VASP計算、BVS計算をMatlantisに変更した場合の結果 第一原理計算の代替手法を用いて探索期間は1年から→2か月大幅削減
実験者がやろうとしてくれる理由、新しい感覚、自分も含む 29/36 PDCAが速く回せる P D C A
Matlantisの課題 30/36 汎用的ゆえ、再現できない現象・物理系あり、多数原子含む新構造の緩和は慎重に
Matlantisの課題と使い分け 31/36 MatlantisはPBE程度のDBを学習しているため、高精度な電子状態の計算はできない 触媒(表面) 電池(拡散) 磁石(磁性) 半導体(バンドギャップ) Matlantis 〇 〇
△ △ 古典MD △ △ × × 第一原理(VASP) 〇 〇(計算負荷大) △ △(計算負荷大) 第一原理(CPA-KKR) 〇 × 〇 〇 *半導体(ハイブリッド汎関数など),磁性体(全電子法など)の物性は電子状態の計算が必要 *構造計算→合成可能性については、Matlantisでの計算も可能
32 ベンチマーク 32/36 Formation Energy(eV/atom) Band Gap(eV) Bulk Moduli Shear
Moduli Activation Energy(eV) CGCNN 0.031 0.292 0.047 0.099 0.392(LiCuOX our 941 structures) CGCNN+3 (our unpublished results with PFN) ‘19 0.038 0.361 0.164 0.284 0.143(COD data, 12,000 structures) SchNet 0.033 0.345 0.066 0.099 MEGNET 0.030 0.307 0.060 0.099 GATGNN 0.033 0.280 0.045 0.075 ALIGNN 0.022 0.218 0.051 0.078 M3GNET 0.035(newer MP) 0.183(newer MP) 0.058(newer MP) 0.086(newer MP) Matlantis 0.0075(COD data 610,000) - - - - Matformer 0.021 0.211 0.043 0.073 Test MAE on Materials Project dataset -2018.6.1 dataset, which contains 69239 crystals *arXiv:2209.11807v1 [cs.LG] 23 Sep 2022
33 ベンチマーク 33/36 バルク単体であれば同等の事が出来るが、界面・表面などになるとMatlantisの精度高
34 ベンチマーク 34/36 バルク単体以外のアモルファス・表面・界面などのトレーニングデータが必要
まとめ 35/36 • 社内外のデータベースを統一集約!~100万件 社外のサイトにアクセスすることなく解析が可能になった • 通常の第一原理計算では扱えないものが計算可能に! 大規模なモデルが扱え、材料探索、最適化が可能になった • 材料提案までの期間が短縮された!コンサルで短期化!
計算時間の大幅短縮によりPDCAが早く回せた
実験者が使いやすい理由 36/36 ◎ チュートリアルが充実している ◎ 初学者でも馴染みがあるJupyter(python)環境ですべてが完結 ◎ 研究の様々なニーズにマッチしていける→拡張性が高い ◎ ユーザーで相談会実施(隔週),PFCCさんと相談会(隔週)
謝辞 37/36 ◎ 材料探索:名古屋工業大学 中山研究室 ◎ MD計算の評価:滋賀大 高柳准教授 ◎ 相図の評価:先端材料技術部
菊池 夏希 ◎ 構造生成・BVS評価の代替:先端材料技術部 中野 高毅 ◎ PFCCさんのコンサル:PFCC 浅野さん他