Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Product-ML Fit
Search
mats
April 06, 2021
Technology
0
200
Product-ML Fit
https://connpass.com/event/207660/
「第2回シード期の開発の進め方 @Plug and Play 渋谷」で使った資料です。
mats
April 06, 2021
Tweet
Share
More Decks by mats
See All by mats
「生成系AI」と「ソフトウェアライセンス」の今 / Generative AI and OSS License
mats16
4
2.2k
🦜️🔗LangChain入門 / LangChain 101
mats16
1
670
Supabase - AWS DevDay 2022
mats16
3
2.1k
AWS スタートアップ支援プログラム / AWS Activate
mats16
0
1.3k
AWS Startup ゼミ 2021 秋期講習 / AWS Startup Seminar 2021 Autumn class - AWS Dev Day
mats16
4
2.6k
Unicorns run on AWS
mats16
0
310
AWS Startup tech Meetup Online 6
mats16
0
1.1k
シードスタートアップに知っておいてほしいこと / What seed startups need to know
mats16
0
380
Introduction to AWS App Runner
mats16
0
1.1k
Other Decks in Technology
See All in Technology
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
640
歴史から学ぶ、Goのメモリ管理基礎
logica0419
14
2.8k
Introduction to Bill One Development Engineer
sansan33
PRO
0
350
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
3
2.1k
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
160
Claude Codeを使った情報整理術
knishioka
20
12k
AWS re:Invent 2025 を振り返る
kazzpapa3
2
120
First-Principles-of-Scrum
hiranabe
4
2.1k
2026/01/16_実体験から学ぶ 2025年の失敗と対策_Progate Bar
teba_eleven
1
170
これまでのネットワーク運用を変えるかもしれないアプデをおさらい
hatahata021
2
130
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
110
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
130
Featured
See All Featured
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
880
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Building the Perfect Custom Keyboard
takai
2
670
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
82
Exploring anti-patterns in Rails
aemeredith
2
230
30 Presentation Tips
portentint
PRO
1
190
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
41
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.2k
Transcript
© 2021, Amazon Web Services, Inc. or its affiliates. All
rights reserved. Product / ML Fit 〜スタートアップのための機械学習⼊⾨〜 Kazuki Matsuda @mats16k Startup Solutions Architect Amazon Web Services Japan K.K.
松⽥ 和樹(まつだ かずき) スタートアップ ソリューションアーキテクト アマゾン ウェブ サービス ジャパン株式会社 創業期のスタートアップに2⼈⽬の
エンジニアとして⼊社し、幅広い業務 ( SRE、データエンジニア、アプリ開発、 情シス、採⽤)に従事。 現在は、スタートアップのお客様の⽀援を しながら次のキャリアを模索中。 好きなサービスは AWS Amplify と AWS Fargate
Product / Machine Learning (ML) Fit
例: Amazon.com を⼀⾔でいうと 「インターネットの店舗に無限の商品棚を⽤意すれば、 お客さんごとに パーソナライズ した ⼩売店 が作れる」(意訳) 「ジェフ・ベゾス
果てなき野望」(ASIN: B00H3WR470) あなたのビジネスは何ですか?
例: Amazon.com を⼀⾔でいうと 「インターネットの店舗に無限の商品棚を⽤意すれば、 お客さんごとに パーソナライズ した ⼩売店 が作れる」(意訳) 「ジェフ・ベゾス
果てなき野望」(ASIN: B00H3WR470) あなたのビジネスは何ですか?
例: Amazon.com を⼀⾔でいうと 「インターネットの店舗に無限の商品棚を⽤意すれば、 お客さんごとに パーソナライズ した ⼩売店 が作れる」(意訳) あなたのビジネスは何ですか?
レコメンド 時系列予測
何が効果的か、どこに機械学習を適⽤すれば良いかを知るには プロダクトの本質的な価値、ユーザーに提供する価値を考える必要がある。 ⼀⽅で、重要な課題が何でも機械学習で解けるわけではない。 簡単に解けるタスクを知っておくことも必要。 プロダクトと機械学習の擦り合わせ Product / ML Fit 伝えたいこと
プロダクトの価値とビジネス指標
そのためには、 1. データ (顧客・商品の属性) 取得 2. フィードバックループの設計 3. アルゴリズム責任者に⼤きな権限を持たせる 4.
機械でやることに固執せず、適切に⼈の⼿を挟む 「Upgrade UX with Data」 dely株式会社 ⼤⽵ 雅登 ⽒・辻 隆太郎 ⽒ (Startup Day 2019) dely株式会社の例 レシピ動画サービス「クラシル」でユーザーの ライフスタイルに寄り添ったレシピを提案
実際にプロダクトの価値を⾼めるために、 ビジネス指標を適切に設計することも重要 参考資料 • 「Gunosyにおけるパーソナライズシステム」 株式会社Gunosy ⼩澤 俊介 ⽒ (ML@Loft
#3) • 「レコメンデーションのターゲットメトリックス」 ウォンテッドリー株式会社 久保⻑ 礼 ⽒ (ML@Loft #3) • 「C向けサービスの1セッションのモデル化と適⽤の⽅法」 ルームクリップ株式会社 平⼭ 知宏 ⽒ (ML@Loft #7) ビジネス指標と機械学習
簡単に解けるタスクを知る
典型的な課題と簡単に使えるサービスの例 やりたいこと タスク AWS サービス オススメ商品を選び ユーザーに最適な商品を提⽰する レコメンド Amazon Personalize
在庫計画・売上予測など 時間軸に沿った数値・分量を予測する 時系列予測 Amazon Forecast サブスクを解約するユーザーを予測 分類 Amazon SageMaker Autopilot
PMF (Product Market Fit) と機械学習
これを考え、市場に受け⼊れられるか検証することが PMF PMF (Product Market Fit) ⢽ "NB[PODPN ♧鎉דְֲה չ؎ٝة٦طحزך䏄莧ח搀ꣲך㉀ㅷ啟欽䠐ׅלծ
ֶ㹏ׁ׀הח ػ٦اشٓ؎ؤ ׃ 㼭㡰䏄 ָ⡲պ 䠐鏬 չآؑؿ٥كبأ 卓גזֹꅿ劄պ "4*/#)83 ֮זךؽآطأכ⡦דַׅ
これを考え、市場に受け⼊れられるか検証することが PMF PMF (Product Market Fit) ⢽ "NB[PODPN ♧鎉דְֲה չ؎ٝة٦طحزך䏄莧ח搀ꣲך㉀ㅷ啟欽䠐ׅלծ
ֶ㹏ׁ׀הח ػ٦اشٓ؎ؤ ׃ 㼭㡰䏄 ָ⡲պ 䠐鏬 ֮זךؽآطأכ⡦דַׅ ٖ؝ًٝس 儗禸✮庠
• とはいえ、PMF の段階ですべてを考えた上で、ビジネスを設計 することは現実的に難しい。 • ⼀⽅で、どの様にデータを集め・活⽤し、差別化していくか 考えていくことは、⽣き残る上では⾮常に重要。 • ビジネスモデルを考える上で、データや機械学習の活⽤は +α
ではなく、Must であると考える必要がある。 PMF (Product Market Fit) と機械学習
プロダクトと機械学習の擦り合わせを PMF の段階で全て設計することは難しい。(前述) ⼀⽅で、機械学習の際に必要になる データ(ログ)の収集は今からでも出来る。 参考:機械学習にはデータ(ログ)収集が不可⽋ © 2019, Amazon Web
Services, Inc. or its affiliates. All rights reserved. ؚٗׯה䪔ְְ • ״ְֻֻ铬겗 ! • %%'5;6F A#' … • 1*CU • 劤䔲ח׃ְֿהכ⡦ " • 5;&:N8 +2/-KH&DE • 3PGO+()0&< KPI &9@ • >S1*!@!$#B=&/,.-I • 䙼罋ؿٗ٦ # 1. " L1* Amazon S3 Q 2. 4!7? 3. S3 &RJIM T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. 0. Data Lake הְֲ罋ִ倯 • Data Lake • )0"#%3 $+ • "* • '6 5, • 1 -2 (API) &. Data Lake !"" RDBMS 7/4( "1*ㄎן⳿׃ח״鸬䵿 AWS ך Data Lake = Amazon S3 Amazon S3 AI & ML SageMaker Personalize Forecast EC2 RDS Redshift EBS Data Backup Glue ETL Archive Glacier Rekognition IoT Core IoT Athena EMR Redshift Analytics BI QuickSight 3. ؚٗׯה䪔ְְ [AWS Start-up ゼミ] よくある課題を⼀気に解説! 御社の技術レベルがアップする 2019 春期講習 より抜粋
まとめ
まとめ Product / ML Fit • ビジネスモデルを考える上で、データや機械学習の活⽤は +α ではなく、Must である。
• プロダクトの価値を改めて考え、⼤事なところに機械学習を適⽤する。 • PMF の段階で全てできている必要は無いが、データや機械学習の活⽤を 常に意識する。データ(ログ)の収集は今からでも着⼿できる。 • 解けない課題を無理に解くのは⼤変なので、既存サービスをうまく使う。
Q&A
Thank you © 2021, Amazon Web Services, Inc. or its
affiliates. All rights reserved.
݄ ʢՐʣɺʢਫʣ։࠵ 事前登録が開始されました!!! 告知:AWS Summit Online
告知:AWS Startup Community