Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Product-ML Fit
Search
mats
April 06, 2021
Technology
0
180
Product-ML Fit
https://connpass.com/event/207660/
「第2回シード期の開発の進め方 @Plug and Play 渋谷」で使った資料です。
mats
April 06, 2021
Tweet
Share
More Decks by mats
See All by mats
「生成系AI」と「ソフトウェアライセンス」の今 / Generative AI and OSS License
mats16
4
1.6k
🦜️🔗LangChain入門 / LangChain 101
mats16
1
590
Supabase - AWS DevDay 2022
mats16
3
1.8k
AWS スタートアップ支援プログラム / AWS Activate
mats16
0
1.1k
AWS Startup ゼミ 2021 秋期講習 / AWS Startup Seminar 2021 Autumn class - AWS Dev Day
mats16
4
2.5k
Unicorns run on AWS
mats16
0
230
AWS Startup tech Meetup Online 6
mats16
0
970
シードスタートアップに知っておいてほしいこと / What seed startups need to know
mats16
0
330
Introduction to AWS App Runner
mats16
0
980
Other Decks in Technology
See All in Technology
PHPカンファレンス名古屋-テックリードの経験から学んだ設計の教訓
hayatokudou
2
500
深層学習と古典的画像アルゴリズムを組み合わせた類似画像検索内製化
shutotakahashi
1
250
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
7
900
Active Directory攻防
cryptopeg
PRO
7
4.3k
プロダクトエンジニア構想を立ち上げ、プロダクト志向な組織への成長を続けている話 / grow into a product-oriented organization
hiro_torii
1
290
コンテナサプライチェーンセキュリティ
kyohmizu
1
110
「海外登壇」という 選択肢を与えるために 〜Gophers EX
logica0419
0
890
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.7k
IAMポリシーのAllow/Denyについて、改めて理解する
smt7174
2
140
クラウドサービス事業者におけるOSS
tagomoris
3
950
全文検索+セマンティックランカー+LLMの自然文検索サ−ビスで得られた知見
segavvy
2
130
NFV基盤のOpenStack更新 ~9世代バージョンアップへの挑戦~
vtj
0
140
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Bash Introduction
62gerente
611
210k
Gamification - CAS2011
davidbonilla
80
5.1k
Docker and Python
trallard
44
3.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Practical Orchestrator
shlominoach
186
10k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Transcript
© 2021, Amazon Web Services, Inc. or its affiliates. All
rights reserved. Product / ML Fit 〜スタートアップのための機械学習⼊⾨〜 Kazuki Matsuda @mats16k Startup Solutions Architect Amazon Web Services Japan K.K.
松⽥ 和樹(まつだ かずき) スタートアップ ソリューションアーキテクト アマゾン ウェブ サービス ジャパン株式会社 創業期のスタートアップに2⼈⽬の
エンジニアとして⼊社し、幅広い業務 ( SRE、データエンジニア、アプリ開発、 情シス、採⽤)に従事。 現在は、スタートアップのお客様の⽀援を しながら次のキャリアを模索中。 好きなサービスは AWS Amplify と AWS Fargate
Product / Machine Learning (ML) Fit
例: Amazon.com を⼀⾔でいうと 「インターネットの店舗に無限の商品棚を⽤意すれば、 お客さんごとに パーソナライズ した ⼩売店 が作れる」(意訳) 「ジェフ・ベゾス
果てなき野望」(ASIN: B00H3WR470) あなたのビジネスは何ですか?
例: Amazon.com を⼀⾔でいうと 「インターネットの店舗に無限の商品棚を⽤意すれば、 お客さんごとに パーソナライズ した ⼩売店 が作れる」(意訳) 「ジェフ・ベゾス
果てなき野望」(ASIN: B00H3WR470) あなたのビジネスは何ですか?
例: Amazon.com を⼀⾔でいうと 「インターネットの店舗に無限の商品棚を⽤意すれば、 お客さんごとに パーソナライズ した ⼩売店 が作れる」(意訳) あなたのビジネスは何ですか?
レコメンド 時系列予測
何が効果的か、どこに機械学習を適⽤すれば良いかを知るには プロダクトの本質的な価値、ユーザーに提供する価値を考える必要がある。 ⼀⽅で、重要な課題が何でも機械学習で解けるわけではない。 簡単に解けるタスクを知っておくことも必要。 プロダクトと機械学習の擦り合わせ Product / ML Fit 伝えたいこと
プロダクトの価値とビジネス指標
そのためには、 1. データ (顧客・商品の属性) 取得 2. フィードバックループの設計 3. アルゴリズム責任者に⼤きな権限を持たせる 4.
機械でやることに固執せず、適切に⼈の⼿を挟む 「Upgrade UX with Data」 dely株式会社 ⼤⽵ 雅登 ⽒・辻 隆太郎 ⽒ (Startup Day 2019) dely株式会社の例 レシピ動画サービス「クラシル」でユーザーの ライフスタイルに寄り添ったレシピを提案
実際にプロダクトの価値を⾼めるために、 ビジネス指標を適切に設計することも重要 参考資料 • 「Gunosyにおけるパーソナライズシステム」 株式会社Gunosy ⼩澤 俊介 ⽒ (ML@Loft
#3) • 「レコメンデーションのターゲットメトリックス」 ウォンテッドリー株式会社 久保⻑ 礼 ⽒ (ML@Loft #3) • 「C向けサービスの1セッションのモデル化と適⽤の⽅法」 ルームクリップ株式会社 平⼭ 知宏 ⽒ (ML@Loft #7) ビジネス指標と機械学習
簡単に解けるタスクを知る
典型的な課題と簡単に使えるサービスの例 やりたいこと タスク AWS サービス オススメ商品を選び ユーザーに最適な商品を提⽰する レコメンド Amazon Personalize
在庫計画・売上予測など 時間軸に沿った数値・分量を予測する 時系列予測 Amazon Forecast サブスクを解約するユーザーを予測 分類 Amazon SageMaker Autopilot
PMF (Product Market Fit) と機械学習
これを考え、市場に受け⼊れられるか検証することが PMF PMF (Product Market Fit) ⢽ "NB[PODPN ♧鎉דְֲה չ؎ٝة٦طحزך䏄莧ח搀ꣲך㉀ㅷ啟欽䠐ׅלծ
ֶ㹏ׁ׀הח ػ٦اشٓ؎ؤ ׃ 㼭㡰䏄 ָ⡲պ 䠐鏬 չآؑؿ٥كبأ 卓גזֹꅿ劄պ "4*/#)83 ֮זךؽآطأכ⡦דַׅ
これを考え、市場に受け⼊れられるか検証することが PMF PMF (Product Market Fit) ⢽ "NB[PODPN ♧鎉דְֲה չ؎ٝة٦طحزך䏄莧ח搀ꣲך㉀ㅷ啟欽䠐ׅלծ
ֶ㹏ׁ׀הח ػ٦اشٓ؎ؤ ׃ 㼭㡰䏄 ָ⡲պ 䠐鏬 ֮זךؽآطأכ⡦דַׅ ٖ؝ًٝس 儗禸✮庠
• とはいえ、PMF の段階ですべてを考えた上で、ビジネスを設計 することは現実的に難しい。 • ⼀⽅で、どの様にデータを集め・活⽤し、差別化していくか 考えていくことは、⽣き残る上では⾮常に重要。 • ビジネスモデルを考える上で、データや機械学習の活⽤は +α
ではなく、Must であると考える必要がある。 PMF (Product Market Fit) と機械学習
プロダクトと機械学習の擦り合わせを PMF の段階で全て設計することは難しい。(前述) ⼀⽅で、機械学習の際に必要になる データ(ログ)の収集は今からでも出来る。 参考:機械学習にはデータ(ログ)収集が不可⽋ © 2019, Amazon Web
Services, Inc. or its affiliates. All rights reserved. ؚٗׯה䪔ְְ • ״ְֻֻ铬겗 ! • %%'5;6F A#' … • 1*CU • 劤䔲ח׃ְֿהכ⡦ " • 5;&:N8 +2/-KH&DE • 3PGO+()0&< KPI &9@ • >S1*!@!$#B=&/,.-I • 䙼罋ؿٗ٦ # 1. " L1* Amazon S3 Q 2. 4!7? 3. S3 &RJIM T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. 0. Data Lake הְֲ罋ִ倯 • Data Lake • )0"#%3 $+ • "* • '6 5, • 1 -2 (API) &. Data Lake !"" RDBMS 7/4( "1*ㄎן⳿׃ח״鸬䵿 AWS ך Data Lake = Amazon S3 Amazon S3 AI & ML SageMaker Personalize Forecast EC2 RDS Redshift EBS Data Backup Glue ETL Archive Glacier Rekognition IoT Core IoT Athena EMR Redshift Analytics BI QuickSight 3. ؚٗׯה䪔ְְ [AWS Start-up ゼミ] よくある課題を⼀気に解説! 御社の技術レベルがアップする 2019 春期講習 より抜粋
まとめ
まとめ Product / ML Fit • ビジネスモデルを考える上で、データや機械学習の活⽤は +α ではなく、Must である。
• プロダクトの価値を改めて考え、⼤事なところに機械学習を適⽤する。 • PMF の段階で全てできている必要は無いが、データや機械学習の活⽤を 常に意識する。データ(ログ)の収集は今からでも着⼿できる。 • 解けない課題を無理に解くのは⼤変なので、既存サービスをうまく使う。
Q&A
Thank you © 2021, Amazon Web Services, Inc. or its
affiliates. All rights reserved.
݄ ʢՐʣɺʢਫʣ։࠵ 事前登録が開始されました!!! 告知:AWS Summit Online
告知:AWS Startup Community