Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[PyCon JP 2019] 新米Pythonistaが贈るAirflow入門&活用事例紹介
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Naoki Matsuda
September 17, 2019
Technology
2
6.8k
[PyCon JP 2019] 新米Pythonistaが贈るAirflow入門&活用事例紹介
PyCon JP 2019の発表資料です。
Naoki Matsuda
September 17, 2019
Tweet
Share
More Decks by Naoki Matsuda
See All by Naoki Matsuda
Tech x Marketing #4 Airflowでもサブワークフロー単位で分割開発したい!
matsudan
0
200
Other Decks in Technology
See All in Technology
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
780
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
ECS障害を例に学ぶ、インシデント対応に備えたAIエージェントの育て方 / How to develop AI agents for incident response with ECS outage
iselegant
4
430
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
SchooでVue.js/Nuxtを技術選定している理由
yamanoku
3
210
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
620
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
今日から始めるAmazon Bedrock AgentCore
har1101
4
420
Featured
See All Featured
Fireside Chat
paigeccino
41
3.8k
How to Think Like a Performance Engineer
csswizardry
28
2.5k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The Curious Case for Waylosing
cassininazir
0
240
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
98
The Limits of Empathy - UXLibs8
cassininazir
1
220
From π to Pie charts
rasagy
0
130
Odyssey Design
rkendrick25
PRO
1
500
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
55
Transcript
৽ถPythonista͕ଃΔAirflowೖ & ׆༻ࣄྫհ PyCon JP 2019 2019.9.17 Naoki Matsuda
Agenda 0. ࣗݾհ 1. Airflowͷ֓ཁ 2. Airflowͷࣾࣄྫհ - ։ൃϓϩμΫτ֓ཁͱ՝, Airflowͷڥ
3. AirflowͰͭ·͍ͮͨ - λεΫؒͷσʔλͷΓͱΓ - DAGಈ࡞֬ೝ ~ dockerͰϩʔΧϧ։ൃڥߏங
ࣗݾհ দా थ (·ͭͩ ͳ͓͖) - ॴଐɿגࣜձࣾ ి௨σδλϧ - ۀɿόοΫΤϯυαʔϏεɺETLपΓͷ։ൃ
- 2018ೖࣾ
1. Airflowͷ֓ཁ
Apache Airflow֓ཁ όονॲཧ͔ΒͳΔϫʔΫϑϩʔͷεέδϡʔϦϯάˍϞχλ Ϧϯά͕ՄೳͳϓϥοτϑΥʔϜ - Airbnbࣾ - Φʔϓϯιʔε (Apache software
foundationͷincubation project)1,2 - PythonͰ࣮͞Ε͍ͯΔ3 - ։ൃίϛϡχςΟ͕׆ൃ3 IUUQTJODVCBUPSBQBDIFPSHQSPKFDUTBJSGMPXIUNM IUUQTBJSGMPXBQBDIFPSHMJDFOTFIUNM IUUQTHJUIVCDPNBQBDIFBJSGMPX
։ൃίϛϡχςΟͷ׆ൃ͞(2019.9.9࣌)
Apache AirflowͰͰ͖Δ͜ͱ - PythonίʔυͰϫʔΫϑϩʔ(DAG)Λఆٛ - ґଘؔʹج͍ͮͨλεΫͷ࣮ߦ - ϫʔΫϑϩʔͷεέδϡʔϦϯά - ϦονͳWeb
UI - DAG࣮ߦεςʔλεͷϞχλϦϯά - λεΫͷϩά֬ೝ - ґଘؔͷՄࢹԽ ͳͲ
PythonίʔυͰϫʔΫϑϩʔఆٛ(DAGͷ࡞) λεΫؒґଘؔͷఆٛ λεΫ1 λεΫ2 DAGͷڞ௨ઃఆ ࣮ߦස, ࣮ߦظؒ, λΠϜΞτ࣌ؒͳͲ
ϫʔΫϑϩʔΛߏ͢ΔλεΫͷ࡞ ≈ - ϫʔΫϑϩʔOperatorͱݺΕΔλεΫʹΑΓߏ͞ΕΔ1 - 1ͭͷOperatorͰ1ͭͷλεΫΛهड़ OperatorͷҾɻ ֤Operator͕ԿͷҾΛ ͱΔ͔υΩϡϝϯτࢀর2 IUUQTBJSGMPXBQBDIFPSHDPODFQUTIUNMPQFSBUPST
IUUQTBJSGMPXBQBDIFPSH@BQJBJSGMPXPQFSBUPSTJOEFYIUNM
ϫʔΫϑϩʔΛߏ͢ΔλεΫͷ࡞ - BashίϚϯυ࣮ߦ: BashOperator - Python࣮ؔߦ: PythonOperator - SQL࣮ߦ: MySqlOperator,
PostgresOperator, … - HTTPϦΫΤετૹ৴: SimpleHttpOperator - ͦͷଞΫϥυܥͳͲ: BigQueryOperator, AWSAthenaOperator, … - ಛఆ݅Ληϯγϯά: Sensor IUUQTBJSGMPXBQBDIFPSHDPODFQUTIUNMPQFSBUPST IUUQTBJSGMPXBQBDIFPSH@BQJBJSGMPXPQFSBUPSTJOEFYIUNM
2. ࣾࣄྫհ - ։ൃϓϩμΫτ֓ཁͱ՝, Airflowͷߏ
։ൃ৫ͱϓϩμΫτʹ͍ͭͯ ɾɾɾ ࠂ৴ σʔλ ϓϥϯφʔ Ӧۀ - ڈ7~9݄, - GoogleDispla
y - ҿྉۀք imp 100000 clicks 5000 cv 700 cost ɾɾɾ ϝσΟΞ ։ൃ৫ νʔϜنɿσʔλΤϯδχΞ ໊ σʔλαΠΤϯςΟετͳͲ໊ d ϓϩμΫτ ͚ࣾσδλϧࠂϓϥϯχϯάπʔϧ ࣾͰѻ͏ϝσΟΞɾΫϥΠΞϯτͷࠂ৴࣮σʔλΛՄࢹԽˍ༧ଌ ϓϩμΫτ (PPHMF :BIPP 5XJUUFS 'BDFCPPL -*/&
։ൃϓϩμΫτʹ͓͚Δ՝ - σʔλ͕RDBʹೖͬͯͳ͍ ৴Ϩϙʔτσʔλ͕ੳ༻ͷྻࢤσʔλϕʔεʹ ͋ͬͨΓɺϚελσʔλ͕εϓϨουγʔτʹ͋ͬͨΓ… - ඞཁͳใΛՃ͢ΔͨΊʹଟ͘ͷϦϨʔγϣϯΛͨͲΔ
։ൃϓϩμΫτʹ͓͚Δ՝ - σʔλ͕RDBʹೖͬͯͳ͍ ৴Ϩϙʔτσʔλ͕ੳ༻ͷྻࢤσʔλϕʔεʹ ͋ͬͨΓɺϚελσʔλ͕εϓϨουγʔτʹ͋ͬͨΓ… - ඞཁͳใΛՃ͢ΔͨΊʹଟ͘ͷϦϨʔγϣϯΛͨͲΔ → ։ൃϓϩμΫτ༻ʹσʔλϚʔτ࡞ RDBʹϑΝΫτ,
σΟϝϯγϣϯςʔϒϧΛETLͰ࡞
Airflowߏ apache-airflow 1.10.2 web worker scheduler Amazon S3 Amazon RDS
Airflow AWS Fargate Amazon ElastiCache Redis Elastic Load Balancing flower DAGs - AWS FargateʹAirflowΛσϓϩΠ ≈ ≈
docker-airflow https://github.com/puckel/docker-airflow
ߏஙͨ͠σʔλϑϩʔ ֤ϝσΟΞࠂ৴σʔλ ϦϨʔγϣϯςʔϒϧܥ JOIN ΫϥΠΞϯτใܥ ʜ ΧϥϜ໊ دͤͳͲ ≈ Amazon
Athena Backend service INSERT "JSGMPX͕࣮ߦ͢ΔλεΫ INSERT
3. AirflowͰͭ·͍ͮͨ - λεΫؒͷσʔλͷΓͱΓ - DAGಈ࡞֬ೝ ~dockerͰϩʔΧϧ։ൃڥߏங
λεΫؒͷσʔλͷΓͱΓ λεΫؒͷσʔλΓͱΓXComΛ͏ - XComͷ͍ํ - XComσʔλΛpush - ؔͰreturn - ؔͰkwargs['task_instance’].
xcom_push(value=hoge, key=‘huga’) - Λฦ͢Operator ྫ: BigqueryGetDataOperator - XCom͔ΒσʔλΛpull - kwargs['task_instance’].xcom_pull() metadata database
λεΫؒͷσʔλͷΓͱΓ BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ BQςʔϒϧ͔Βσʔλऔಘ # XComʹpush͞ΕΔ BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ BQςʔϒϧ͔Βσʔλऔಘ # XComʹpush͞ΕΔ transpose_dataؔΛ࣮ߦ BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ 1. task1Ͱpush͞ΕͨXcomͷ σʔλΛpullͯ͠ 2. ςʔϒϧͷσʔλΛసஔ BQςʔϒϧ͔Βσʔλऔಘ # XComʹpush͞ΕΔ transpose_dataؔΛ࣮ߦ
BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ provide_contextΛTrueʹ͠ͳ͍ͱkwargs[‘task_intance’]ͰKeyError - provide_context=False (default) kwargs : {} - provide_context=True
kwargs: { 'dag': <DAG: sample>, 'ds': '2019-09-10’, 'next_ds': '2019-09-10’, … 'task_instance’: <TaskInstance: sample.task1_2 …> … }
λεΫؒͷσʔλͷΓͱΓ - PythonOperatorͷҾͰTrue OR - default_argsͰઃఆ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங - ࡞ͨ͠ϫʔΫϑϩʔ(DAG)ͷςετͲ͏Δʁ എܠɿ - Ϋϥυ্devڥͰͷDAGಈ࡞֬ೝͰS3upload͢Δखؒ - ଞͷਓ͕ಉ͡λΠϛϯάͰ։ൃ͍ͯ͠ΔͱΓͮΒ͍… →
ϩʔΧϧͰDAGͷಈ࡞֬ೝ͍ͨ͠ʂ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங → dockerͰAirflowΛϩʔΧϧʹ্ཱͪ͛Δ - ࡞ͨ͠ϫʔΫϑϩʔ(DAG)ͷςετͲ͏Δʁ എܠɿ - Ϋϥυ্devڥͰͷDAGಈ࡞֬ೝͰS3upload͢Δखؒ -
ଞͷਓ͕ಉ͡λΠϛϯάͰ։ൃ͍ͯ͠ΔͱΓͮΒ͍… → ϩʔΧϧͰDAGͷಈ࡞֬ೝ͍ͨ͠ʂ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங LocalExecutorΛ༻
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங LocalExecutorΛ༻ dagsσΟϨΫτϦΛvolumeͱ͠ ͯϚϯτ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங - dockerͷvolumeͱͯ͠dagsσΟϨΫτϦΛϚϯ τ͍ͯ͠ΔͷͰॻ͖͑ͨΒ͙͢ʹө - Web UIʹ͕ࣗ࡞ͨ͠DAGͷΈ͕දࣔ͞ΕΔ - ECR͔ΒimageΛऔͬͯ͘ΔΑ͏ʹͯ͠ຊ൪ͱಉ͡
ڥͰಈ࡞֬ೝͰ͖Δ
·ͱΊ - ETL͕ඞཁͳࣾ։ൃϓϩμΫτʹ͓͍ͯAirflowΛ ͍·ͨ͠ɻ - ຊ൪ڥͷAirflowECS FargateʹσϓϩΠ͠·ͨ͠ɻ - ϩʔΧϧ։ൃڥʹdockerΛ༻ͯ͠։ൃָ͕ʹͳΓ ·ͨ͠ɻ
We are hiring ! https://bit.ly/2UqWPGO
supplementary information
λεΫؒґଘؔͷఆٛ - Ϗοτγϑτԋࢉࢠ(>>, <<)Λ͍λεΫͷґଘؔΛද͢ - ޙଓλεΫͷ࣮ߦ݅શͯͷઌߦλεΫޭ͕σϑΥϧτઃఆ1 - શOperator͕࣋ͭtrigger_ruleҾͰ࣮ߦ݅ΛมߋՄೳ1 IUUQTBJSGMPXBQBDIFPSHDPODFQUTIUNMUSJHHFSSVMFT
- γϯϓϧͳґଘؔ task1 >> task2 - λεΫάϧʔϓ͕͋Δґଘؔ task1 >> [task2-1,task2-2] >> task3
Web UI: ϞχλϦϯά - Tree View - Gantt Chart
Web UI: Variable
ฒྻઃఆ Configuring parallelism in airflow.cfg - parallelism : ࢄॲཧΫϥελશମͰ࣮ߦՄೳͳϓϩηε -
dag_concurrency : ҰͭͷϫʔΧͰಉ࣮࣌ߦՄೳͳ࠷େϓϩηε - max_active_runs_per_dag : DAG෦Ͱಉ࣮࣌ߦՄೳͳ࠷େλε Ϋ - worker_concurrency : ҰͭͷCeleryϫʔΧͰಉ࣮࣌ߦՄೳͳ࠷େ ϓϩηε IUUQTBOBMZUJDTMJWFTFOTFDPKQFOUSZ