Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[PyCon JP 2019] 新米Pythonistaが贈るAirflow入門&活用事例紹介
Search
Naoki Matsuda
September 17, 2019
Technology
2
6.4k
[PyCon JP 2019] 新米Pythonistaが贈るAirflow入門&活用事例紹介
PyCon JP 2019の発表資料です。
Naoki Matsuda
September 17, 2019
Tweet
Share
More Decks by Naoki Matsuda
See All by Naoki Matsuda
Tech x Marketing #4 Airflowでもサブワークフロー単位で分割開発したい!
matsudan
0
170
Other Decks in Technology
See All in Technology
クラウドネイティブ環境の脅威モデリング
kyohmizu
1
370
DynamoDB のデータを QuickSight で可視化する際につまづいたこと/stumbling-blocks-when-visualising-dynamodb-with-quicksight
emiki
0
130
コスト最適重視でAurora PostgreSQLのログ分析基盤を作ってみた #jawsug_tokyo
non97
2
890
Terraform にコントリビュートしていたら Azure のコストをやらかした話 / How I Messed Up Azure Costs While Contributing to Terraform
nnstt1
1
260
テストって楽しい!開発を加速させるテストの魅力 / Testing is Fun! The Fascinating of Testing to Accelerate Development
aiandrox
0
160
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
290
Microsoft Fabric vs Databricks vs (Snowflake) -若手エンジニアがそれぞれの強みと違いを比較してみた- "A Young Engineer's Comparison of Their Strengths and Differences"
reireireijinjin6
1
140
社会人力と研究力ー博士号をキャリアの武器にするー
kentaro
2
110
Oracle Cloud Infrastructure:2025年4月度サービス・アップデート
oracle4engineer
PRO
0
380
Dataverseの検索列について
miyakemito
1
180
30代からでも遅くない! 内製開発の世界に飛び込み、最前線で戦うLLMアプリ開発エンジニアになろう
minorun365
PRO
16
5.1k
GraphQLを活用したリアーキテクチャに対応するSLI/Oの再設計
coconala_engineer
0
200
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.2k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
The Pragmatic Product Professional
lauravandoore
33
6.6k
Become a Pro
speakerdeck
PRO
28
5.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Docker and Python
trallard
44
3.4k
Speed Design
sergeychernyshev
29
930
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Making the Leap to Tech Lead
cromwellryan
133
9.3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.6k
Transcript
৽ถPythonista͕ଃΔAirflowೖ & ׆༻ࣄྫհ PyCon JP 2019 2019.9.17 Naoki Matsuda
Agenda 0. ࣗݾհ 1. Airflowͷ֓ཁ 2. Airflowͷࣾࣄྫհ - ։ൃϓϩμΫτ֓ཁͱ՝, Airflowͷڥ
3. AirflowͰͭ·͍ͮͨ - λεΫؒͷσʔλͷΓͱΓ - DAGಈ࡞֬ೝ ~ dockerͰϩʔΧϧ։ൃڥߏங
ࣗݾհ দా थ (·ͭͩ ͳ͓͖) - ॴଐɿגࣜձࣾ ి௨σδλϧ - ۀɿόοΫΤϯυαʔϏεɺETLपΓͷ։ൃ
- 2018ೖࣾ
1. Airflowͷ֓ཁ
Apache Airflow֓ཁ όονॲཧ͔ΒͳΔϫʔΫϑϩʔͷεέδϡʔϦϯάˍϞχλ Ϧϯά͕ՄೳͳϓϥοτϑΥʔϜ - Airbnbࣾ - Φʔϓϯιʔε (Apache software
foundationͷincubation project)1,2 - PythonͰ࣮͞Ε͍ͯΔ3 - ։ൃίϛϡχςΟ͕׆ൃ3 IUUQTJODVCBUPSBQBDIFPSHQSPKFDUTBJSGMPXIUNM IUUQTBJSGMPXBQBDIFPSHMJDFOTFIUNM IUUQTHJUIVCDPNBQBDIFBJSGMPX
։ൃίϛϡχςΟͷ׆ൃ͞(2019.9.9࣌)
Apache AirflowͰͰ͖Δ͜ͱ - PythonίʔυͰϫʔΫϑϩʔ(DAG)Λఆٛ - ґଘؔʹج͍ͮͨλεΫͷ࣮ߦ - ϫʔΫϑϩʔͷεέδϡʔϦϯά - ϦονͳWeb
UI - DAG࣮ߦεςʔλεͷϞχλϦϯά - λεΫͷϩά֬ೝ - ґଘؔͷՄࢹԽ ͳͲ
PythonίʔυͰϫʔΫϑϩʔఆٛ(DAGͷ࡞) λεΫؒґଘؔͷఆٛ λεΫ1 λεΫ2 DAGͷڞ௨ઃఆ ࣮ߦස, ࣮ߦظؒ, λΠϜΞτ࣌ؒͳͲ
ϫʔΫϑϩʔΛߏ͢ΔλεΫͷ࡞ ≈ - ϫʔΫϑϩʔOperatorͱݺΕΔλεΫʹΑΓߏ͞ΕΔ1 - 1ͭͷOperatorͰ1ͭͷλεΫΛهड़ OperatorͷҾɻ ֤Operator͕ԿͷҾΛ ͱΔ͔υΩϡϝϯτࢀর2 IUUQTBJSGMPXBQBDIFPSHDPODFQUTIUNMPQFSBUPST
IUUQTBJSGMPXBQBDIFPSH@BQJBJSGMPXPQFSBUPSTJOEFYIUNM
ϫʔΫϑϩʔΛߏ͢ΔλεΫͷ࡞ - BashίϚϯυ࣮ߦ: BashOperator - Python࣮ؔߦ: PythonOperator - SQL࣮ߦ: MySqlOperator,
PostgresOperator, … - HTTPϦΫΤετૹ৴: SimpleHttpOperator - ͦͷଞΫϥυܥͳͲ: BigQueryOperator, AWSAthenaOperator, … - ಛఆ݅Ληϯγϯά: Sensor IUUQTBJSGMPXBQBDIFPSHDPODFQUTIUNMPQFSBUPST IUUQTBJSGMPXBQBDIFPSH@BQJBJSGMPXPQFSBUPSTJOEFYIUNM
2. ࣾࣄྫհ - ։ൃϓϩμΫτ֓ཁͱ՝, Airflowͷߏ
։ൃ৫ͱϓϩμΫτʹ͍ͭͯ ɾɾɾ ࠂ৴ σʔλ ϓϥϯφʔ Ӧۀ - ڈ7~9݄, - GoogleDispla
y - ҿྉۀք imp 100000 clicks 5000 cv 700 cost ɾɾɾ ϝσΟΞ ։ൃ৫ νʔϜنɿσʔλΤϯδχΞ ໊ σʔλαΠΤϯςΟετͳͲ໊ d ϓϩμΫτ ͚ࣾσδλϧࠂϓϥϯχϯάπʔϧ ࣾͰѻ͏ϝσΟΞɾΫϥΠΞϯτͷࠂ৴࣮σʔλΛՄࢹԽˍ༧ଌ ϓϩμΫτ (PPHMF :BIPP 5XJUUFS 'BDFCPPL -*/&
։ൃϓϩμΫτʹ͓͚Δ՝ - σʔλ͕RDBʹೖͬͯͳ͍ ৴Ϩϙʔτσʔλ͕ੳ༻ͷྻࢤσʔλϕʔεʹ ͋ͬͨΓɺϚελσʔλ͕εϓϨουγʔτʹ͋ͬͨΓ… - ඞཁͳใΛՃ͢ΔͨΊʹଟ͘ͷϦϨʔγϣϯΛͨͲΔ
։ൃϓϩμΫτʹ͓͚Δ՝ - σʔλ͕RDBʹೖͬͯͳ͍ ৴Ϩϙʔτσʔλ͕ੳ༻ͷྻࢤσʔλϕʔεʹ ͋ͬͨΓɺϚελσʔλ͕εϓϨουγʔτʹ͋ͬͨΓ… - ඞཁͳใΛՃ͢ΔͨΊʹଟ͘ͷϦϨʔγϣϯΛͨͲΔ → ։ൃϓϩμΫτ༻ʹσʔλϚʔτ࡞ RDBʹϑΝΫτ,
σΟϝϯγϣϯςʔϒϧΛETLͰ࡞
Airflowߏ apache-airflow 1.10.2 web worker scheduler Amazon S3 Amazon RDS
Airflow AWS Fargate Amazon ElastiCache Redis Elastic Load Balancing flower DAGs - AWS FargateʹAirflowΛσϓϩΠ ≈ ≈
docker-airflow https://github.com/puckel/docker-airflow
ߏஙͨ͠σʔλϑϩʔ ֤ϝσΟΞࠂ৴σʔλ ϦϨʔγϣϯςʔϒϧܥ JOIN ΫϥΠΞϯτใܥ ʜ ΧϥϜ໊ دͤͳͲ ≈ Amazon
Athena Backend service INSERT "JSGMPX͕࣮ߦ͢ΔλεΫ INSERT
3. AirflowͰͭ·͍ͮͨ - λεΫؒͷσʔλͷΓͱΓ - DAGಈ࡞֬ೝ ~dockerͰϩʔΧϧ։ൃڥߏங
λεΫؒͷσʔλͷΓͱΓ λεΫؒͷσʔλΓͱΓXComΛ͏ - XComͷ͍ํ - XComσʔλΛpush - ؔͰreturn - ؔͰkwargs['task_instance’].
xcom_push(value=hoge, key=‘huga’) - Λฦ͢Operator ྫ: BigqueryGetDataOperator - XCom͔ΒσʔλΛpull - kwargs['task_instance’].xcom_pull() metadata database
λεΫؒͷσʔλͷΓͱΓ BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ BQςʔϒϧ͔Βσʔλऔಘ # XComʹpush͞ΕΔ BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ BQςʔϒϧ͔Βσʔλऔಘ # XComʹpush͞ΕΔ transpose_dataؔΛ࣮ߦ BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ 1. task1Ͱpush͞ΕͨXcomͷ σʔλΛpullͯ͠ 2. ςʔϒϧͷσʔλΛసஔ BQςʔϒϧ͔Βσʔλऔಘ # XComʹpush͞ΕΔ transpose_dataؔΛ࣮ߦ
BigQuery͔ΒςʔϒϧσʔλΛऔಘͯͦ͠ͷσʔλΛՃ͢Δྫ
λεΫؒͷσʔλͷΓͱΓ provide_contextΛTrueʹ͠ͳ͍ͱkwargs[‘task_intance’]ͰKeyError - provide_context=False (default) kwargs : {} - provide_context=True
kwargs: { 'dag': <DAG: sample>, 'ds': '2019-09-10’, 'next_ds': '2019-09-10’, … 'task_instance’: <TaskInstance: sample.task1_2 …> … }
λεΫؒͷσʔλͷΓͱΓ - PythonOperatorͷҾͰTrue OR - default_argsͰઃఆ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங - ࡞ͨ͠ϫʔΫϑϩʔ(DAG)ͷςετͲ͏Δʁ എܠɿ - Ϋϥυ্devڥͰͷDAGಈ࡞֬ೝͰS3upload͢Δखؒ - ଞͷਓ͕ಉ͡λΠϛϯάͰ։ൃ͍ͯ͠ΔͱΓͮΒ͍… →
ϩʔΧϧͰDAGͷಈ࡞֬ೝ͍ͨ͠ʂ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங → dockerͰAirflowΛϩʔΧϧʹ্ཱͪ͛Δ - ࡞ͨ͠ϫʔΫϑϩʔ(DAG)ͷςετͲ͏Δʁ എܠɿ - Ϋϥυ্devڥͰͷDAGಈ࡞֬ೝͰS3upload͢Δखؒ -
ଞͷਓ͕ಉ͡λΠϛϯάͰ։ൃ͍ͯ͠ΔͱΓͮΒ͍… → ϩʔΧϧͰDAGͷಈ࡞֬ೝ͍ͨ͠ʂ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங LocalExecutorΛ༻
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங LocalExecutorΛ༻ dagsσΟϨΫτϦΛvolumeͱ͠ ͯϚϯτ
DAGಈ࡞֬ೝ ~ϩʔΧϧ։ൃڥߏங - dockerͷvolumeͱͯ͠dagsσΟϨΫτϦΛϚϯ τ͍ͯ͠ΔͷͰॻ͖͑ͨΒ͙͢ʹө - Web UIʹ͕ࣗ࡞ͨ͠DAGͷΈ͕දࣔ͞ΕΔ - ECR͔ΒimageΛऔͬͯ͘ΔΑ͏ʹͯ͠ຊ൪ͱಉ͡
ڥͰಈ࡞֬ೝͰ͖Δ
·ͱΊ - ETL͕ඞཁͳࣾ։ൃϓϩμΫτʹ͓͍ͯAirflowΛ ͍·ͨ͠ɻ - ຊ൪ڥͷAirflowECS FargateʹσϓϩΠ͠·ͨ͠ɻ - ϩʔΧϧ։ൃڥʹdockerΛ༻ͯ͠։ൃָ͕ʹͳΓ ·ͨ͠ɻ
We are hiring ! https://bit.ly/2UqWPGO
supplementary information
λεΫؒґଘؔͷఆٛ - Ϗοτγϑτԋࢉࢠ(>>, <<)Λ͍λεΫͷґଘؔΛද͢ - ޙଓλεΫͷ࣮ߦ݅શͯͷઌߦλεΫޭ͕σϑΥϧτઃఆ1 - શOperator͕࣋ͭtrigger_ruleҾͰ࣮ߦ݅ΛมߋՄೳ1 IUUQTBJSGMPXBQBDIFPSHDPODFQUTIUNMUSJHHFSSVMFT
- γϯϓϧͳґଘؔ task1 >> task2 - λεΫάϧʔϓ͕͋Δґଘؔ task1 >> [task2-1,task2-2] >> task3
Web UI: ϞχλϦϯά - Tree View - Gantt Chart
Web UI: Variable
ฒྻઃఆ Configuring parallelism in airflow.cfg - parallelism : ࢄॲཧΫϥελશମͰ࣮ߦՄೳͳϓϩηε -
dag_concurrency : ҰͭͷϫʔΧͰಉ࣮࣌ߦՄೳͳ࠷େϓϩηε - max_active_runs_per_dag : DAG෦Ͱಉ࣮࣌ߦՄೳͳ࠷େλε Ϋ - worker_concurrency : ҰͭͷCeleryϫʔΧͰಉ࣮࣌ߦՄೳͳ࠷େ ϓϩηε IUUQTBOBMZUJDTMJWFTFOTFDPKQFOUSZ