Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
React Performance Tuning
Search
Kento TSUJI
April 19, 2019
Technology
8
1.6k
React Performance Tuning
React Meet up with zeit @2019.04.19
Kento TSUJI
April 19, 2019
Tweet
Share
More Decks by Kento TSUJI
See All by Kento TSUJI
React製 SPA における パフォーマンスチューニング
maxmellon
24
8.6k
User Timing API with React Redux
maxmellon
0
220
Other Decks in Technology
See All in Technology
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
660
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
610
マルチエージェントのチームビルディング_2025-10-25
shinoyamada
0
230
GPUをつかってベクトル検索を扱う手法のお話し~NVIDIA cuVSとCAGRA~
fshuhe
0
300
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
23
15k
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
180
Okta Identity Governanceで実現する最小権限の原則
demaecan
0
220
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
170
オブザーバビリティと育てた ID管理・認証認可基盤の歩み / The Journey of an ID Management, Authentication, and Authorization Platform Nurtured with Observability
kaminashi
2
1.5k
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
0
230
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
190
ストレージエンジニアの仕事と、近年の計算機について / 第58回 情報科学若手の会
pfn
PRO
4
930
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Balancing Empowerment & Direction
lara
5
710
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Statistics for Hackers
jakevdp
799
220k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
How to train your dragon (web standard)
notwaldorf
97
6.3k
How GitHub (no longer) Works
holman
315
140k
Transcript
React Performance Tuning Kento TSUJI @maxmellon Recruit Technologies Co., Ltd.
React Meet up with zeit / 2019.04.19
Welcome to Japan!!!!! At asakusa © 2019 The Hotelier Group
Akasaka K.K. https://anaintercontinental-tokyo.jp/location/asakusa/
Profile • Github: @maxmellon • Twitter: @maxmellon_9039 • Start working
second year at the recruit-tech • Yosuke Furukawa’s subordinate *BN/FXCJF 'SPOUFOE&OHJOFFS ✨ ✨
Let me introduce one My favorite food
Udon ͏ͲΜ
:VVVVN
Let’s talk about main subject
What am I doing in R-tech • Develop “AirSHIFT” •
Develop new features • Improve performance • Performance Hackson in frontend • In other products than AirSHIFT
What is the “AirSHIFT” ?
"EKVTUNFOU 4IJGUT AirSHIFT is web service for store managers of
part time staffs ※ “Store Manager” manages all schedule of part time job in Japanese $SFBUFXPSL 4DIFEVMF -JTUVQTIJGUT $PMMFDUTIJGUT GSPNQBSUT 3FNJOE 1SJOUPVU 3FRVFTU XPSL
So rich UI as Desktop Application
Architecture
BFF (express) Client API Isomorphic Session Data Notification (socket.io) Redis
FCM wrapper (React/Redux) Fetchr CSR SSR DB Push Notification WebSocket OAuth CellPhone Application For Part time worker
͜Ε·ͰͷύϑΥʔϚϯεվળ Performance improvements so far
̎ͭͷΞϓϩʔνͰվળ Improved performance with two approaches https://speakerdeck.com/maxmellon/reactzhi-spa-niokeru-pahuomansutiyuningu ࠶ϨϯμϦϯάͷ࠷దԽ 0QUJNJ[BUJPOSFSFOEFSJOH େ͖ͳςʔϒϧͷ7JSUVBMJ[FEԽ
7JSUVBMJ[FEMBSHFTDBMFUBCMFDPNQPOFOU Nodefest’ 18ɺHTML5 Conf Ͱհ Introduced Nodefest’ 18 and HTML5 Conf
https://speakerdeck.com/maxmellon/reactzhi-spa-niokeru-pahuomansutiyuningu ࠶ϨϯμϦϯάͷ࠷దԽ 0QUJNJ[BUJPOSFSFOEFSJOH େ͖ͳςʔϒϧͷ7JSUVBMJ[FEԽ 7JSUVBMJ[FEMBSHFTDBMFUBCMFDPNQPOFOU Nodefest’ 18ɺHTML5 Conf Ͱհ Introduced
Nodefest’ 18 and HTML5 Conf ৄࡉ͜ͷεϥΠυʹॻ͍ͯ͋Γ·͢ Details are in these slides https://speakerdeck.com/maxmellon/reactzhi-spa-niokeru-pahuomansutiyuningu
Before 13,529ms After 3,612ms CPU x4 slow Fast 3G Improvement
վળ 374%
͔͠͠… but…
13,529ms 3,612ms 3.6ඵ͍ͬͯͷʁ Is 3.6 second so fast?
PGVTFSTXJMMMFBWFJGQBHFMPBEJOH UJNFJTMPOHFSUIBOTFDPOET News Lab Japanese AMP Office Hour: Introduction to
AMP with Duncan Wright, Strategic Partner Manager ΑΓ https://www.youtube.com/watch?time_continue=150&v=3N6yDLP1WUIa
͞ΒͳΔվળ͕ඞཁ Further performance improvement is needed
ࠓ͞ΒͳΔվળʹ͍ͭͯհ͠·͢ Today I’ll introduce further improvement
ϘτϧωοΫͷௐࠪ Investigation of bottlenecks
ௐࠪ݅ Research condition • /sft/monthlyshift/201701 → /sft/monthlyshift/201702 ͷભҠ •
ը໘αΠζ 1440 x 900 (ϝΠϯλʔήοτ) transition Display size Main target
None
ؔͷ࣮ߦ͚ͩͰ110ms 110ms with function execution only ϘτϧωοΫ ͦͷ1 Bottleneck 1
Կͯ͠Δͷ͔ʁ What is actually happening?
None
None
None
None
None
None
େྔͷmomentͷΠϯελϯεΛੜ Create many instances of moment
ϘτϧωοΫ ͦͷ2 Bottleneck 2 ͯ͢ಉ͡ίϯϙʔωϯτ All same components ΞΫγϣϯ͕dispatch͞ΕΔͱ࠶ϨϯμϦϯά͕ى͖Δ Re-render
happens with each action dispatch
ͳͥ࠶ϨϯμϦϯά͕ൃੜʁ Why re-render?
reselectΈΜͳͬͯΔʁ Reselect ͕ ຖճҧ͏ Object Λฦ٫͍ͯͨ͠ reselect was returning different
object each time
None
ଞʹ͍͔ͭ͘ϘτϧωοΫ͕͋ͬͨ There were more bottlenecks
1ͭ1ͭվળͯ͠Ϩϙʔτʹ·ͱΊͨ All of them were resolved and summarized in reports
Moment Λେྔʹੜ͍ͯ͠Δ • ಉ͡ͷ࠶ੜ͍ͯͨ͠ͷͰͻͱ·ͣmemoize • ͯ͢UnixTimeʹΑΔܭࢉʹॻ͖͍ͨ͠ ˠ ͨͩɼ͓ۚपΓσάϨͬͨͱ͖ͷϦεΫ͕େ͖͘அ೦ Hope to
re-implementation by unix time. Memoized instance for a while Issue 1: many moment instances
Reselect ͕ຖճҧ͏ObjectΛੜ͍ͯ͠Δ • Reselect ͷΛνʔϜͰ࠶֬ೝ • ΞϯνύλʔϯΛհͯ͠࠶ൃࢭ Issue 2: reselect
returning different object each time Introduced how to use reselect and anti-patterns to team
ͦͷ݁Ռ Results
50%ͷϢʔβʔ1.5ඵҎʹ Ӿཡ͢Δ͜ͱ͕Ͱ͖ΔΑ͏ʹ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪
⚪ ⚪ ⚪ ⚪ 50% of users can load the page within 1.5sec
75%ͷϢʔβʔ3.0ඵҎ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ 75% of
users can load within 3.0 sec
Γ25%3ඵͰඳըग़དྷ͍ͯͳ͍ 25% of users take longer than 3 sec
͜ͷ40%͕ͷՄೳੑ ୯७ʹͯΊΔͱ 40% of them might leave
ࠓɼ͜ΕΛղܾ͢ΔͨΊͷࢪࡦΛݕ౼͍ͯ͠Δ We are examining to solve this
͜ΕΒͷϢʔβʔͷಛ • ଞͷϢʔβʔΑΓCPUͷੑೳ͕͍ʢͱਪଌͰ͖Δʣ CPUΛΘͳ͍Ξϓϩʔν͕ඞཁ The characteristic of these users have
lower CPU spec than other users Will need approach that DON'T use CPU
Prefetch
PrefetchʹΑΔϖʔδදࣔͷߴԽ /monthly /daily 44% 10% ཌͷ ༧ఆ֬ೝ͠Α͏ʂ ࣍ͷߦಈΛ༧ APIͷΞΫηεϩά͔ΒΛਪଌ Research
user action from access logs Rendering speed-up using Prefetch
BFF Client API Request Request Learning Server .PEFM Request
BFF Client API Request SSR Request Response Response Learning Server
.PEFM Response Request ୯७Ϛϧίϑաఔ Markov process
BFF Client API Request SSR Request Response Response Learning Server
.PEFM Response Request ୯७Ϛϧίϑաఔ Markov process ࣍ʹऔಘ͖͢ϦιʔεΛϔομʹೖ #''JOKFDUTJOUPUIFIFBEFSSFTPVSDFTSFRVJSFEOFYU
BFF Client API Learning Server .PEFM Parse Header Pre-fetch Request
BFF Client API Learning Server .PEFM Request Request Response Response
LRU-cache SET
BFF Client API Learning Server .PEFM LRU-cache exist ? click
BFF Client API Learning Server .PEFM LRU-cache exist ? click
ߦಈ༧͕ ”͋ͨͬͨ” ࣌ When the expectation was met
BFF Client API Learning Server .PEFM LRU-cache GET click CSR
BFF Client API Learning Server .PEFM LRU-cache exist ? click
ߦಈ༧͕ ”֎Εͨ” ࣌ When an expectation is missed
BFF Client API Learning Server .PEFM click CSR Request Request
Request Response Response Response
WebWorker × Suspence
None
None
ͦͷ··Έ߹ΘͤΔͷগ͠େม A bit difficult to combine these.
None
worker.js
Hello.js
App.js
https://git.io/fjOCk (maxmellon/react-with-comlink-sample)
Comlink ❤ Suspense
Lazy Rendering
None
༏ઌ͕ߴ͍ High priority
༏ઌ͕͍ Low priority
ॏ͍ܭࢉ͕ඞཁ Required heavy calculation
͜ΕΒͷࢪࡦͰͯ͢ͷϢʔβʔ͕ ετϨεແ͘ར༻Ͱ͖Δͷ͕ཧ I hope these measures will make all users
stress-free to use AirSHIFT
͠ɼհͨ͠ΞϓϩʔνҎ֎Ͱ ༗ޮͦ͏ͳ͕͋Εڭ͑ͯ΄͍͠ Please tell me if you know other effective
approaches
͋Γ͕ͱ͏ Thank you
None