Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[読み会] TabNet: Attentive Interpretable Tabular L...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
mei28
January 05, 2021
0
170
[読み会] TabNet: Attentive Interpretable Tabular Learning
読み会資料
TabNet: Attentive Interpretable Tabular Learning(ICLR, 2020, rejected)
mei28
January 05, 2021
Tweet
Share
More Decks by mei28
See All by mei28
[Human-AI Decision Making勉強会] 説明を部分的に見せることで人に考えさせ、AIへの不適切な依存を減らす
mei28
0
100
[読み会] CHI2025論文紹介
mei28
1
61
[読み会] “Are You Really Sure?” Understanding the Effects of Human Self-Confidence Calibration in AI-Assisted Decision Making
mei28
0
150
[JSAI'24] 人間の判断根拠は文脈によって異なるのか?〜信頼されるXAIに向けた人間の判断根拠理解〜
mei28
2
780
[CHI'24] Fair Machine Guidance to Enhance Fair Decision Making in Biased People
mei28
0
110
[DEIM2024] 卓球の得点予測における重要要素の分析
mei28
0
59
[Human-AI Decision Making勉強会] 意思決定 with AIは個人vsグループで変わるの?
mei28
0
260
[読み会] Words are All You Need? Language as an Approximation for Human Similality Judgements
mei28
0
77
[参加報告] AAAI'23
mei28
0
130
Featured
See All Featured
Discover your Explorer Soul
emna__ayadi
2
1.1k
Music & Morning Musume
bryan
47
7.1k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
How STYLIGHT went responsive
nonsquared
100
6k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Making Projects Easy
brettharned
120
6.6k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Embracing the Ebb and Flow
colly
88
5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Transcript
TabNet: Attentive Interpretable Tabular Learning ಡΈձ@2021/01/05 ༶໌
• ஶऀ • Sercan O. Arik, Tomas Pfister •
Google Cloud AI • ग़య: ArxivͷPreprint • ICLR 2020ͰϦδΣΫτ͞Εͨจ จใ
• ςʔϒϧσʔλ͚ͷDNNϞσϧ • ܾఆͱNNϞσϧͷ͍͍ͱ͜औΓΛࢦͨ͠ख๏ • ղऍੑ + ਫ਼ ͷ্͕ୡͰ͖ͨɽ
֓ཁ ͲΜͳจʁ
• DNNͷϞσϧ͕ಛʹը૾,ݴޠ,ԻͷͰSOTAͰ͋Δɽ • KaggleͳͲͷੳίϯϖͰॳΊʹܾఆϕʔεͷख๏͕ओྲྀ • ղऍੑ͕ߴ͍͔Β ং ݚڀഎܠ
• ͳΜͰςʔϒϧσʔλʹରͯ͠ɼਂֶशΛऔΓೖΕ͍ͨͷ͔ʁ • େنͳσʔληοτʹ͍ͨͯ͠ɼਂֶशʹΑ্͕ͬͯظͰ͖Δ ͔Β • Deep Learning Scaling
is Predictable, Empirically.(Hestness et al., 2017) ং ݚڀഎܠ
• ςʔϒϧσʔλʹରͯ͠NNϞσϧΛ͏3ͭͷϝϦοτ 1. ෳͷσʔλΛޮΑ͘ΤϯίʔσΟϯάͰ͖Δ 2. ಛྔΤϯδχΞϦϯάͷखؒΛݮΒͤΔ 3. End-to-endͰѻ͏͜ͱ͕Ͱ͖Δɽ ং
ݚڀഎܠ
• σʔλͷલॲཧΛߦΘͣʹend-to-endͰͷֶशΛߦ͑Δɽ • ஞ࣍ҙΛ༻͍Δ͜ͱͰղऍੑͷߴ͍Ϟσϧʹͳ͍ͬͯΔɽ • Local interpretability: ೖྗಛͷॏཁ •
Global interpretability: ֤ಛྔ͕Ϟσϧʹରͯ͠Ͳͷ͘Β͍Өڹ͔ͨ͠ ং ఏҊख๏ͷߩݙ
• DNN+DT • ஞ࣍ҙΛ༻͍ͯɼಛબΛߦ͍ಛΛೖΕࠐΜͰ͍Δɽ • Tree-based learning • ಛબʹDNNΛ༻͍͍ͯΔɽ
• Feature Selection • ίϯύΫτͳදݱ͕Ͱ͖ͨɽ ؔ࿈ݚڀ
• Attentive transformer • ಛྔʹରͯ͠͏MaskͷֶशΛߦ͏ɽ • Feature transformer •
ಛྔͷมɼ࣍εςοϓʹ͏ͷΛܾΊΔɽ ఏҊख๏ ॏཁͳύʔπ
• ͜ΕҎ߱ग़ͯ͘Δ εςοϓ1,2,...ʹରԠ͍ͯ͠Δ i ఏҊख๏ શମͷߏ
• • : աڈͷMͰΘΕ͍ͯΔ͔ʁʹΑͬͯ มΘΔॏΈ(࣮Ͱར༻੍ݶΈ͍ͨͳͷ) • Sparsemax: softmaxʹࣅͨ׆ੑԽؔ M[i]
= sparsemax(P[i] ⋅ hi (a[i − 1])) P[i] ఏҊख๏ Attentive Transformer: ϚεΫͷֶशΛߦ͏ɽ
• SoftmaxΑΓૄʹͳΓ͍͢ ͔ΒɼॏཁͳಛྔΛऔΓग़ ͍͢͠ ίϥϜ SparseMax (Andre et al.,
2016)
• ɼa࣍ͷεςοϓʹճ͞ΕΔ [d[i], a[i]] = fi (M[i] ⋅ f)
ఏҊख๏ Feature Transformer: ೖྗΛม͠ɼ࣍ʹ͏ͷΛܾΊΔ
• ֤εςοϓ Λूܭ ͯ͠࠷ऴతͳ༧ଌʹ ༻͍Δ d[i] ఏҊख๏ ࠷ऴ༧ଌ
• ಛྔͷॏཁϚεΫΛͬͯܭࢉ͢Δ • ؆୯ʹܭࢉ͢ΔͨΊɼϚεΫͰͳ͘ಛྔΛ༻͍Δ ɹɹɹ ɹˠͲͷαϯϓϧ͕ॏཁ͔ʁ • → ಛྔͷॏཁ
ηb [i] = Nd ∑ c ReLU(db,c [i]) Magg−b,j = ∑Ns teps i=1 ηb [i]Mb,j [i] ∑D j=1 ∑Nsteps i=1 ηb [i]Mb,j [i] ఏҊख๏ ղऍੑʹ͍ͭͯ
• Feature selection͕֤εςοϓʹରԠ ఏҊख๏ ಛྔબͷΠϝʔδ
• ֤ϚεΫʹΑͬͯ࡞ΒΕΔಛྔ͕ذʹରԠ͍ͯ͠Δɽ ఏҊख๏ Ͳ͕ܾ͜ఆΆ͍ͷʁ
• ର߅ख๏: • ޯϒʔεςΟϯάܥ: LightGBM, XGBoost, CatBoost • NNϞσϧ
• ͳʹͰൺΔ͔ʁ • ςετσʔλʹର͢Δaccuracy • ϞσϧͷαΠζ ࣮ݧ ࣮ݧઃఆ
• ࣮σʔλ(ForestCoverType)Ͱର߅ख๏ΑΓਫ਼͕ྑ͔ͬͨɽ ࣮ݧ݁Ռ ਫ਼ʹؔͯ͠
• ϞσϧαΠζ͕ܰྔͰਫ਼͕͍͍ɽ ࣮ݧ݁Ռ ϞσϧαΠζʹؔͯ͠
࣮ݧ݁Ռ ղऍੑʹ͍ͭͯ • ͷ݁ՌΛՄࢹԽ • ߦ͕αϯϓϧɼྻ͕ಛྔ • ന͍ͱ͜Ζ͕ಛྔͱͯ͠ॏཁ ͱஅͨ͠ͱ͜Ζ
ηb [i]
• ஞ࣍ҙΛߦ͏͜ͱͰɼॏཁͳಛྔબΛߦͳ͍ͬͯΔɽ • ϚεΫΛ༻͍Δ͜ͱͰղऍੑͷߴ͍Ϟσϧʹͳͬͨɽ • ༷ʑͳྖҬͷςʔϒϧσʔλͰੑೳΛൃشͰ͖Δ͜ͱΛࣔ͠ ͨɽ ·ͱΊ
• Accuracy: 0.81, ROC-AUC: 0.78 ͓·͚ TitanicσʔληοτͰTabNetΛ༡ΜͰΈͨɽ
͓·͚ LightGBM vs NN model vs TabNet LightGBM NN
model • TabNet: Accuracy: 0.81, ROC-AUC: 0.78 https://github.com/mei28/playground_python/blob/main/notebooks/titanic.ipynb ϋΠύϥॳظͷ··Ͱ νϡʔχϯάΛߦͳ͍ͬͯͳ͍