Upgrade to Pro — share decks privately, control downloads, hide ads and more …

非線形最適化の基礎〜射影・錐・凸関数〜

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for miruca miruca
March 15, 2019

 非線形最適化の基礎〜射影・錐・凸関数〜

射影の非拡大性,錐と極錐,Farkasの補題,凸関数に関するスライド

Avatar for miruca

miruca

March 15, 2019
Tweet

More Decks by miruca

Other Decks in Science

Transcript

  1. ͜ͷεϥΠυͷ໨త ʰඇઢܗ࠷దԽͷجૅʱ(෱ౡ, 2001) ʹؔͯ͠ • ࣹӨͷඇ֦େੑʹ͍ͭͯཧղ͢Δ • ਲ਼ͱۃਲ਼ʹ͍ͭͯཧղ͢Δ • Farkas

    ͷิ୊Λཧղ͢Δ • ತؔ਺ʹ͍ͭͯཧղ͢Δ • ತؔ਺Ͱ͋ΔͨΊͷඞཁे෼৚݅Λཧղ͢Δ ˞஫ҙ • ຊεϥΠυͷఆཧ౳ͷ൪߸͸ʰඇઢܗ࠷దԽͷجૅʱʹ४ͣΔ • ਤ͸ͳ͍ͷͰదٓखΛಈ͔͠ͳ͕Βཧղ͢Δ͜ͱΛਪ঑ • ఆཧͷূ໌͸ॏཁͳ΋ͷʹ͍ͭͯͷΈߦ͏
  2. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) Today’s

    Topic 1. ࣹӨ (projection) 2. Farkas ͷิ୊ (Farkas’ lemma) 3. ತؔ਺ (convex function) 3 / 20
  3. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ࣹӨͷఆٛ

    ఆٛ: ࣹӨ (projection) ඇۭͷดತू߹ *1)S ⫅ Rn Λߟ͑Δɽ೚ҙͷ఺ x ∈ Rn ʹର͠ɼ ∥x − P s(x)∥ = min {∥x − z | z ∈ S} (1) Λຬͨ͢఺ P s(x) ∈ S ͕ଘࡏ͢Δ *2)ɽ͜ͷࣸ૾ P s : Rn → S, x → P s(x) Λ S ΁ͷࣹӨ(projection) ͱݺͿɽ • ࣜ (1) Λຬͨ͢఺ P s(x) ∈ S ͸།ҰͰ͋Δɽ • x ∈ S ͳΒ͹ x = P s(x) Ͱ͋Δɽ • ೚ҙͷ఺ x ∈ Rn ʹରͯ͠ɼ͕࣍ࣜ੒Γཱͭɿ ⟨x − P s(x), z − P s(z)⟩ ≦ 0 (∀z ∈ S). (2) *1)ดू߹͔ͭತू߹Ͱ͋ΔΑ͏ͳू߹Λดತू߹ͱ͍͏ɽ *2)P s(x) ͸ S ͷதͰ x Λ࠷ྑʹۙࣅ͢Δ఺ͱͳ͍ͬͯΔɽ 5 / 20
  4. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ࣹӨʹؔ͢Δఆཧ

    ఆཧ 2.6 S ⫅ Rn ΛۭͰͳ͍ดತू߹ͱ͢Δɽͦͷͱ͖ɼ೚ҙͷ఺ x ∈ Rn ʹରͯ͠ɼx ͷ S ΁ͷࣹӨ P s(x) ͕Ұҙతʹଘࡏ͠ɼෆ౳ࣜ ⟨x − P s(x), z − P s(x)⟩ ≦ 0 (∀z ∈ S) (2) ͕੒Γཱͭɽ • ಉ͜͡ͱ͕ͩɼ೚ҙͷ x⋆ ∈ S ʹରͯ͠ɼ x⋆ = P s(x) ⇔ ⟨x − x⋆, z − x⋆⟩ ≦ 0 (∀z ∈ S) (3) ͕੒Γཱͭɽ • ࣜ (2) ͸ʮx⋆ Λ࢝఺ͱ͢Δ 2 ͭͷϕΫτϧ x − x⋆ ͱ z − x⋆ ͷͳ͕֯͢Ӷ֯ʹͳΒͳ͍ʯͱ͍͏زԿֶతͳಛ௃෇͚͕Ͱ ͖Δɽ 6 / 20
  5. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ࣹӨͷඇ֦େੑ

    ຊఆཧ͸ม෼ෆ౳ࣜ (VIP) ʹର͢Δஞ࣍ۙࣅΞϧΰϦζϜͷղੳͳ ͲͰॏཁͳ໾ׂΛՌͨ͢ॏཁͳఆཧͰ͋Δɽ ఆཧ 2.7 S ⫅ Rn ΛۭͰͳ͍ดತू߹ͱ͢Δɽ͜ͷͱ͖ ∥P s(x) − P s(y)∥ ≦ ∥x − y∥ (∀x, y ∈ Rn) (4) ͕੒Γཱͭɽ • ఆཧ 2.7 ͸ɼ೚ҙͷ 2 ఺ؒͷڑ཭͸ดತू߹΁ͷࣹӨʹΑͬͯ ֦͕Βͳ͍͜ͱΛ͍ࣔͯ͠Δɽ • ࣹӨ P s Λ Rn ͔Β Rn ΁ͷࣸ૾ͱΈͳ͢ͱɼఆཧ 2.7 ͸ࣸ૾ P s ͷඇ֦େੑΛ͍ࣔͯ͠Δ *3)ɽ *3)Ұൠʹࣸ૾ T : Rn → Rn ͕৚݅ ∥T(x) − T(y)∥ ≦ ∥x − y∥ (∀x, y ∈ Rn) Λຬͨ ͢ͱ͖ɼT ͸ඇ֦େࣸ૾ (nonexpansive map) Ͱ͋Δͱ͍͏ɽ 7 / 20
  6. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ࣹӨͷඇ֦େੑ

    ূ໌. ఆཧ 2.6 ΑΓɼ೚ҙͷ఺ x, y ∈ Rn ʹରͯ͠ɼ ⟨x − P s(x), z − P s(x)⟩ ≦ 0 (∀z ∈ S) (5) ⟨y − P s(y), z − P s(y)⟩ ≦ 0 (∀z ∈ S) (6) ͕੒Γཱͭɽࣜ (5)(6) ͸೚ҙͷ z ∈ S ʹରͯ͠੒ΓཱͭͷͰɼ ⟨x − P s(x), P s(y) − P s(x)⟩ ≦ 0 (7) ⟨y − P s(y), P s(x) − P s(y)⟩ ≦ 0 (8) ΋੒Γཱͭ ( (∵)P s(x) ∈ S, P s(y) ∈ S )ɽ ࣜ (7)(8) ΛลʑՃ͑ɼίʔγʔɾγϡϫϧπͷෆ౳ࣜΛద༻͢Δͱ ∥P s(x) − P s(y)∥2 ≦ ⟨P s(x) − P s(y), x − y⟩ (9) ≦ ∥P s(x) − P s(y)∥ · ∥x − y∥ (10) ͕ಘΒΕ (෇࿥ A)ɼลʑ ∥P s(x) − P s(y)∥ ͰׂΔͱࣜ (4) ͕ಘΒ ΕΔɽ(ূ໌ऴ) 8 / 20
  7. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ਲ਼ͷఆٛ

    ఆٛ: ਲ਼ ࣍ͷ৚݅Λຬ଍͢Δू߹ C ∈ Rn Λਲ਼(cone) ͱ͍͏ɽ x ∈ C, α ∈ [0, ∞) ⇒ αx ∈ C ಛʹɼਲ਼͕ತू߹Ͱ͋Δͱ͖ತਲ਼ɼดू߹Ͱ͋Δͱ͖ดਲ਼ͱ͍͍ɼ ดू߹Ͱ͋ΔΑ͏ͳತਲ਼Λดತਲ਼ͱ͍͏ɽ ྫ 2.7 ࣍ͷू߹ Ci (i = 1, 2, 3, 4) ͸͍ͣΕ΋ดತਲ਼Ͱ͋Δɽ • C1 = { x ∈ Rn | x = ∑ m i=1 αiai, αi ≧ 0 (i = 1, . . . , m) } • C2 = { x ∈ Rn | ⟨ ai, x ⟩ ≦ 0 (i = 1, . . . , m) } • C3 = { x ∈ Rn | x2 1 ≧ x2 2 + · · · + x2 n , x1 ≧ 0 } 10 / 20
  8. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ۃਲ਼ͷఆٛ

    ఆٛ: ۃਲ਼ ೚ҙͷਲ਼ C ⫅ Rn ʹରͯ͠ C⋆ := {y ∈ Rn | ⟨y, x⟩ ≦ 0 (∀x ∈ C)} Ͱఆٛ͞ΕΔू߹ C⋆ ⫅ Rn Λ C ͷۃਲ਼(polar cone) ͱ͍͏ɽ • ۃਲ਼ C⋆ ͸ɼC ʹଐ͢Δ͢΂ͯͷϕΫτϧͱ 90◦ Ҏ্ͷ֯Λͳ ͢ϕΫτϧશମͷू߹Ͱ͋Δɽ • ۃਲ਼ C⋆ ͸ਲ਼ͷఆٛΛຬͨ͢ͷͰਲ਼Ͱ͋Δ *4)ɽ • C ͕෦෼ۭؒͰ͋Ε͹ɼC⋆ ͸ C ͷ௚ަิۭؒͱ౳ՁͰ͋Δɽ *4)೚ҙͷ y ∈ C⋆ ʹରͯ͠ɼ⟨y, x⟩ ≦ 0 (∀x ∈ C) ͕੒Γཱͭɽ͜ͷͱ͖ɼ೚ҙͷ α ∈ [0, ∞) ʹରͯ͠ɼα ⟨y, x⟩ = ⟨αy, x⟩ ≦ 0 Ͱ͋Δ͔Βɼαy ∈ C⋆ ͕ݴ͑Δɽ͕ͨͬ͠ ͯɼC⋆ ͸ਲ਼Ͱ͋Δɽ 11 / 20
  9. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ਲ਼ͱۃਲ਼ͷੑ࣭

    ࣍ͷ 2 ͭͷఆཧ͸ਲ਼ͱۃਲ਼ͷؔ܎Λड़΂ͨ΋ͷͰ͋ΓॏཁͰ͋Δɽ ఆཧ 2.12 ೚ҙͷۭͰͳ͍ਲ਼ C ⊆ Rn ʹରͯ͠ɼ • ͦͷۃਲ਼ C⋆ ͸ดತਲ਼Ͱ͋Δ • ؔ܎ࣜ C⋆ = (co C)⋆ ͕੒Γཱͭ ·ͨɼ2 ͭͷਲ਼ C, D ⊆ Rn ʹରͯ͠ɼC ⊆ D ⇒ C⋆ ⫆ D⋆ ͕੒Γ ཱͭɽ ఆཧ 2.13 ೚ҙͷۭͰͳ͍ਲ਼ C ⊆ Rn ʹରͯ͠ɼͦͷۃਲ਼ C⋆ ͷۃਲ਼ (C⋆)⋆ = C⋆⋆ ͸ɼC ͷತแͷดแ cl co C ʹҰக͢Δ *5)ɽಛʹɼC ͕ดತਲ਼ͳΒ͹ɼC = C⋆⋆ ͕੒Γཱͭɽ *5)ਲ਼ C ͷತแͷดแ cl co C ͱดแͷತแ co cl C ͸Ұக͢Δͱ͸ݶΒͳ͍ɽ 12 / 20
  10. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) Farkas’

    lemma 2 ͭͷఆཧ͔Β Farkas ͷิ୊ͱݺ͹ΕΔॏཁͳ໋୊͕ಋ͔ΕΔɽ ఆཧ 2.15 Farkas ͷิ୊ ϕΫτϧ a1, . . . , am ∈ Rn ʹΑͬͯੜ੒͞ΕΔดತଟ໘ਲ਼ C = { x ∈ Rn | x = m ∑ i=1 αiai, αi ≧ 0 (i = 1, . . . , m) } ͱɼ͢΂ͯͷ ai ͱ 90◦ Ҏ্ͷ֯Λͳ͢ϕΫτϧશମ͔ΒͳΔดತ ଟ໘ਲ਼ K = { y ∈ Rn | ⟨ ai, y ⟩ ≦ 0 (i = 1, . . . , m) } ʹରͯ͠ɼK = C⋆ ͓Αͼ C = K⋆ ͳΔؔ܎͕੒Γཱͭɽ • ຊิ୊͸ඇઢܗܭը໰୊ͷ࠷దੑ৚݅ (KKT ৚݅) Λಋͨ͘Ί ʹॏཁͳ໾ׂΛՌͨ͢ɽ 13 / 20
  11. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) Proof

    of Farkas’ lemma ূ໌. K = C⋆ ʹର͢Δূ໌͸ (1) K ⫅ C⋆ (2) C⋆ ⫅ K ͷೋஈ֊Ͱߦ͏ɽ (1) ೚ҙͷ y ∈ K ʹରͯ͠ɼy ∈ C⋆ Ͱ͋Δ͜ͱΛࣔ͢ɽy ∈ K Ͱ ͋Δ͔Βɼ೚ҙͷ x = ∑ m i=1 αiai ∈ C ʹରͯ͠ɼ ⟨x, y⟩ = ⟨ m ∑ i=1 αiai, y ⟩ = m ∑ i=1 αi ⟨x, y⟩ ≦ 0 ͕੒Γཱͭɽ͜Ε͸ y ∈ C⋆ Λҙຯ͍ͯ͠ΔͷͰɼK ⫅ C⋆ ͕ࣔ͞ Εͨɽ(2) ೚ҙͷ y ∈ C⋆ ʹରͯ͠ɼy ∈ K Ͱ͋Δ͜ͱΛࣔ͢ɽۃ ਲ਼ C⋆ ͷఆٛΑΓɼ೚ҙͷ x ∈ C ʹରͯ͠ɼ ⟨y, x⟩ = ⟨ y, m ∑ i=1 αiai ⟩ = m ∑ i=1 αi ⟨ y, ai ⟩ ≦ 0 (11) ͕੒Γཱͭɽ͜͜Ͱɼαi ≧ 0 (i = 1, . . . , m) ͸೚ҙͰ͋Δɽ 14 / 20
  12. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ্ࣜ

    (11) ͸ ⟨ y, ai ⟩ ≦ 0 ͕֤ i ∈ I = {1, . . . , m} ʹରͯ͠੒Γཱ ͭ͜ͱΛҙຯ͍ͯ͠ΔɽͳͥͳΒɼ͋Δ j ∈ I ʹରͯ͠ɼ ⟨ aj, y ⟩ > 0 ͳΔఴࣈ͕͋ΔͱԾఆ͢Δͱɼαj = 1, α = 0 (i ̸= j) ͱ͓͘͜ͱʹΑΓɼ m ∑ i=1 ⟨ y, αiai ⟩ = αj ⟨ y, aj ⟩ > 0 ͕੒Γཱͪɼy ∈ C⋆ Ͱ͋Δ͜ͱʹ൓͢Δ͔ΒͰ͋Δɽ͕ͨͬͯ͠ɼ y ∈ K Ͱ͋ΓɼC⋆ ⫅ K ͕੒ΓཱͭɽҎ্ΑΓɼK = C⋆ ͕ࣔ͞ Εͨɽ C = K⋆ Λࣔ͢ʹ͸ɼఆཧ 2.13 Λ K = C⋆ ʹରͯ͠ద༻͢Ε͹Α ͍ɽͭ·ΓɼC ͸ดತਲ਼Ͱ͋Δ͔Βɼఆཧ 2.13 ͕ద༻Ͱ͖ɼ K⋆ = C⋆⋆ = C ͕੒Γཱͭɽ(ূ໌ऴ) 15 / 20
  13. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ತؔ਺ͷఆٛ

    ఆٛ: άϥϑɾΤϐάϥϑɾತؔ਺ • ؔ਺ f : Rn → [−∞, +∞] ʹରͯ͠ɼRn+1 ͷ෦෼ू߹ graph f = { (x, β)⊤ ∈ Rn+1 | β = f(x) } Λ f ͷάϥϑ(graph) ͱ͍͏ɽ • f ͷάϥϑΑΓ্ʹ͋Δ఺શମͷू߹ epi f = { (x, β)⊤ ∈ Rn+1 | β ≧ f(x) } Λ f ͷΤϐάϥϑ(epigraph) ͱ͍͏ɽ • Τϐάϥϑ epi f ͕ತू߹Ͱ͋ΔΑ͏ͳؔ਺ f Λ ತؔ਺(convex function) ͱ͍͏ɽ 17 / 20
  14. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ತؔ਺Ͱ͋ΔͨΊͷඞཁे෼৚݅

    ఆཧ 2.22 ؔ਺ f : Rn → (−∞, +∞] ͕ತؔ਺Ͱ͋ΔͨΊͷඞཁे෼৚݅͸ɼ ೚ҙͷ x, y ∈ Rn ͱ೚ҙͷඇෛ࣮਺ α ∈ [0, 1] ʹରͯ͠ɼ f ((1 − α)x + αy) ≦ (1 − α)f(x) + αf(y) (12) ͕੒Γཱͭ͜ͱͰ͋Δ *6)ɽ • ࣜ (12) ͸ɼf ͷάϥϑʹଐ͢Δ೚ҙͷ 2 ఺Λ݁Ϳઢ෼͕ f ͷ Τϐάϥϑʹؚ·ΕΔ͜ͱΛҙຯ͍ͯ͠Δɽ • ຊఆཧ͸ತؔ਺ͷఆ͔ٛΒূ໌Ͱ͖Δ (෇࿥ B)ɽ • ༩͑ΒΕͨؔ਺͕ತؔ਺Ͱ͋Δ͔Ͳ͏͔൑ఆ͢Δ͜ͱ͸Ұൠత ʹ༰қͰ͸ͳ͍ͨΊɼఆཧ 2.22 ͸༗༻Ͱ͋Δɽ *6)ࣜ (12) Λತؔ਺ͷఆٛͱͯ͠༻͍͍ͯΔจݙ΋ଟ͍ɽ 18 / 20
  15. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ತؔ਺:

    ޯ഑ʹΑΔಛ௃෇͚ ఆཧ 2.29 f : Rn → (−∞, +∞] Λ࣮ޮఆٛҬ *7)dom f ͕։ತू߹Ͱ͋ΔΑ͏ ͳؔ਺ͱ͢Δɽf ͕ dom f ʹ͓͍ͯඍ෼ՄೳͰ͋Δͱ͖ɼf ͕ತؔ ਺Ͱ͋ΔͨΊͷඞཁे෼৚݅͸ɼx ̸= y Ͱ͋ΔΑ͏ͳ೚ҙͷ x, y ∈ dom f ʹରͯ͠ɼҎԼͷෆ౳͕ࣜ੒ཱ͢Δ͜ͱͰ͋Δɿ f(y) − f(x) ≧ ⟨∇f(x), y − x⟩ . (13) • ࣜ (13) ͸௒ฏ໘ H = {(y, α) ∈ Rn+1 | α = f(x) + ⟨∇f(x), y − x⟩} ͕఺ (x, f(x))⊤ ∈ Rn+1 ʹ͓͚Δ epi f ͷࢧ࣋௒ฏ໘Ͱ͋Δ͜ ͱΛҙຯ͍ͯ͠Δɽ *7)ؔ਺ f ʹରͯ͠ɼ{x ∈ Rn | f(x) < +∞} Ͱఆٛ͞ΕΔू߹ 19 / 20
  16. ࣹӨ (projection) Farkas ͷิ୊ (Farkas’ lemma) ತؔ਺ (convex function) ತؔ਺:

    Hesse ߦྻʹΑΔಛ௃෇͚ ఆཧ 2.30 f : Rn → (−∞, +∞] Λ࣮ޮఆٛҬ dom f ͕։ತू߹Ͱ͋ΔΑ͏ͳ ؔ਺ͱ͢Δɽf ͕ dom f ʹ͓͍ͯ 2 ճ࿈ଓతඍ෼ՄೳͰ͋Δͱ͖ɼ f ͕ತؔ਺Ͱ͋ΔͨΊͷඞཁे෼৚݅͸ɼx ̸= y Ͱ͋ΔΑ͏ͳ೚ҙ ͷ x, y ∈ dom f ʹରͯ͠ɼHesse ߦྻ ∇2f(x) ͕൒ਖ਼ఆ஋ߦ ྻ *8)ɼ͢ͳΘͪ ∇2f(x) ≽ O ͱͳΔ͜ͱͰ͋Δɽ ྫ ؔ਺ f(x) = 4x2 1 − 2x1x2 + x2 2 − 10x1 − 8x2 − 100 ʹର͢Δ Hesse ߦྻ͸ ∇2f(x) = ( 8 −2 −2 2 ) ≽ O Ͱ͋Δ *9) ͷͰɼఆཧ 2.30 ΑΓؔ਺ f ͸ತؔ਺Ͱ͋Δɽ *8)n ࣍ਖ਼ํߦྻ A ͸ɼ೚ҙͷ x∈Rn ʹରͯ͠ɼ⟨x, Ax⟩ ≧ 0 ͕੒Γཱͭͱ͖൒ਖ਼ఆ஋Ͱ ͋Δͱ͍͍ɼA ≽ O ͱॻ͘ɽ *9)ݻ༗஋ΛٻΊΔͱ λ = 5 ± √ 13 > 0 ΑΓ ∇2f(x) ≽ O Ͱ͋Δɽ 20 / 20
  17. ෇࿥ A ೦ͷҝɼࣜ (7)(8) ͔Βࣜ (9) Λಋ͘աఔΛࡌ͓ͤͯ͘ɽࣜ (7) ͸࣍ ࣜͱ౳ՁͰ͋Δ͜ͱʹ஫ҙ͢Δɽ

    ⟨P s(x) − x, P s(x) − P s(y)⟩ ≦ 0 (7’) ࣜ (7’)(8) ͷลʑΛՃ͑Δ͜ͱʹΑΓɼ ⟨P s(x) − P s(y), P s(x) − x − P s(y) + y⟩ ≦ 0 ͕੒Γཱͭ (P s(x) − P s(y) Λڞ௨Ҽࢠͱͯ͘͘͠Γग़͢)ɽޙ͸ɼ ಺ੵͷੑ࣭Λར༻ͯ͠ܭࢉ͢Ε͹ɼ ∥P s(x) − P s(y)∥2 ≦ ⟨P s(x) − P s(y), x − y⟩ ͕ಘΒΕΔɽ
  18. ෇࿥ B ূ໌ ఆ͔ٛΒ؆୯ʹಋग़Ͱ͖Δɽತؔ਺ͷఆٛΑΓɼؔ਺ f ͕ತ ؔ਺Ͱ͋Δ͜ͱ͸ɼ೚ҙͷ (x, β)⊤ ∈

    epi f, (y, γ)⊤ ∈ epi f ͱ࣮਺ α ∈ [0, 1] ʹରͯ͠ɼ (1 − α) ( x β ) + α ( y γ ) = ( (1 − α)x + αy (1 − α)β + αγ ) ∈ epi f ͱͳΔ͜ͱͰ͋ΔɽΤϐάϥϑͷఆٛΑΓ্ࣜ͸ɼ f ((1 − α)x + αy) ≦ (1 − α)β + αγ (14) ͱ౳ՁͰ͋Δɽ͍·ɼf(x) ≦ β, f(y) ≦ γ Λຬͨ͢೚ҙͷ x, y ∈ Rn ͱ࣮਺ β, γ ∈ R ͓Αͼ α ∈ [0, 1] ʹରͯ͠ɼෆ౳ࣜ (14) ͕ຬͨ͞Εͳ͚Ε͹ͳΒͳ͍ɽ͕ͨͬͯ͠ɼॴ๬ͷෆ౳ࣜ f ((1 − α)x + αy) ≦ (1 − α)f(x) + αf(y) ͕ಘΒΕΔɽ(ূ໌ऴ)