Upgrade to Pro — share decks privately, control downloads, hide ads and more …

非線形最適化の基礎〜カラテオドリの定理〜

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for miruca miruca
March 13, 2019

 非線形最適化の基礎〜カラテオドリの定理〜

凸解析に関する基本的な内容と「カラテオドリの定理」に関するスライド

Avatar for miruca

miruca

March 13, 2019
Tweet

More Decks by miruca

Other Decks in Science

Transcript

  1. ͜ͷεϥΠυͷ໨త ʰඇઢܗ࠷దԽͷجૅʱ(෱ౡ, 2001) ʹؔͯ͠ • ತղੳͷجຊతͳ಺༰ (e.g., ತू߹ɼತแɼತ݁߹) Λཧղ͢Δ •

    ತ݁߹ʹؔ͢Δ༗༻ͳิ୊ (ิ୊ 2.2) Λཧղ͢Δ • Caratheodory’s theorem(ΧϥςΦυϦͷఆཧ) Λཧղ͢Δ ˞஫ҙ • ຊεϥΠυͷఆཧ౳ͷ൪߸͸ʰඇઢܗ࠷దԽͷجૅʱʹ४ͣΔ • ਤ͸ͳ͍ͷͰదٓखΛಈ͔͠ͳ͕Βཧղ͢Δ͜ͱΛਪ঑ • ΧϥςΦυϦͷఆཧʹؔͯ͠ɼࣗ෼ͰྫΛߏ੒ͯ͠ཧղΛਂΊ Δ͜ͱΛਪ঑
  2. ತू߹ Carath´ eodory’s theorem ತू߹ ఆٛ: ತू߹ (convex set) ू߹

    S ⫅ Rn ͷ೚ҙͷ 2 ఺Λ݁Ϳઢ෼͕ू߹ S ʹؚ·ΕΔɼ͢ͳΘ ͪɼ೚ҙͷ࣮਺ α ∈ [0, 1] ʹରͯ͠ x ∈ S, y ∈ S ⇒ (1 − α)x + αy ∈ S ͕੒ΓཱͭͳΒ͹ɼS ͸ತू߹ (convex set) Ͱ͋Δͱ͍͏ɽ ྫ: ತू߹ • C1 = { (x1, x2) ∈ R2 | x2 1 + x2 2 ≦ 1 } • C2 = { x ∈ Rn | x = ∑ m i=1 αiai, αi ≧ 0 (i = 1, . . . , m) } • C3 = { (x1, x2, x3) ∈ R3 | x2 1 ≧ x2 2 + x2 3 , x1 ≧ 0 } 5 / 16
  3. ತू߹ Carath´ eodory’s theorem ತू߹ʹؔ͢Δఆཧ ఆཧ 2.1 ೚ҙݸͷತू߹ Si (i

    ∈ I) ͷڞ௨ू߹ ∩i∈ISi ͸ತू߹Ͱ͋Δɽ ͜͜ͰɼI ͸೚ҙͷఴࣈू߹ *1) Ͱ͋Δɽ ূ໌. ೚ҙݸͷತू߹ Si (i ∈ I) ͷڞ௨ू߹ ∩i∈ISi Λ S Ͱද͢ɽ ͭ·ΓɼS = ∩i∈ISi ͱ͢ΔɽS ʹଐ͢Δ 2 ఺ x, y ͸ɼ͢΂ͯͷ i ∈ I ʹରͯ͠ɼx, y ∈ Si Ͱ͋Γɼ֤ Si ͸ԾఆΑΓತू߹Ͱ͋Δ ͔Βɼ೚ҙͷ α ∈ [0, 1] ʹରͯ͠ɼ(1 − α)x + αy ∈ Si ͕੒Γཱͭɽ Αͬͯɼ೚ҙͷ α ∈ [0, 1] ʹରͯ͠ɼ(1 − α)x + αy ∈ ∩i∈ISi = S ͱͳΔͷͰɼS ͸ತू߹Ͱ͋Δɽ(ূ໌ऴ) ˞͢΂ͯͷू߹ Si (i ∈ I) ͕ดू߹Ͱ͋Ε͹ɼू߹ S ΋ดू߹ɽ *1)ఴࣈू߹ͱ͸ɼྫ͑͹ɼ༗ݶݸͷཁૉΛؚΉ I = {1, 2, . . . , m} Ͱ͋ͬͨΓɼແݶݸͷ ཁૉΛؚΉ N(ࣗવ਺શମͷू߹) ͳͲΛද͢ɽ 6 / 16
  4. ತू߹ Carath´ eodory’s theorem ತแɾತ݁߹ ఆٛ: ತแ (convex hull) ೚ҙͷू߹

    S ⫅ Rn ʹରͯ͠ɼS ΛؚΉ࠷খͷತू߹Λ S ͷತแ (convex hull) ͱݺͼɼco S Ͱද͢ɽ ఆٛ: ತ݁߹ (convex combination) m ݸͷ఺ x1, . . . , xm ∈ Rn ʹରͯ͠ɼ α1 + · · · + αm = 1 Λຬͨ͢Α͏ͳඇෛ࣮਺ αi ≧ 0 (i = 1, . . . , m) Λ༻͍ͯ x = α1x1 + · · · + αmxm ͱද͞ΕΔϕΫτϧ x ∈ Rn Λ x1, . . . , xm ∈ Rn ͷತ݁߹ (convex combination) ͱ͍͏ɽ 7 / 16
  5. ತू߹ Carath´ eodory’s theorem ತ݁߹ʹؔ͢Δิ୊ ิ୊ 2.2 ఺ x ∈

    Rn ͕ m ݸͷ఺ x1, . . . , xm ∈ Rn ͷತ݁߹ͱͯ͠ද͞Εͯ ͍Δͱ͢Δɽ͜ͷͱ͖ɼm ≧ n + 2 ͳΒ͹ɼ఺ x1, . . . , xm ∈ Rn ͔ Βߴʑ n + 1 ݸͷ఺ΛબΜͰɼx ΛͦΕΒͷತ݁߹ͱͯ͠ද͢͜ͱ ͕Ͱ͖Δɽ ূ໌. {x1, . . . , xm} ͷ෦෼ू߹Ͱɼx Λತ݁߹ͱͯ͠ද͢͜ͱͷͰ ͖Δ΋ͷͷ͏ͪɼͦͷϕΫτϧͷݸ਺͕࠷খͷ΋ͷΛɼҰൠੑΛࣦ ͏͜ͱͳ͘ɼ{x1, . . . , xp} ͱͰ͖Δɽͨͩ͠ɼp ≦ m Ͱ͋Δɽ͍ ·ɼิ୊ 2.2 ͕ਖ਼͘͠ͳ͍ͱԾఆ͢Δͱɼp ≧ n + 2 Ͱ͋ͬͯ x = p ∑ i=1 αixi ͔ͭ ∑ p i=1 αi = 1 ͳΔ αi > 0 (i = 1, . . . , p) ͕ଘࡏ͢Δ (˞ 1)ɽ 8 / 16
  6. ತू߹ Carath´ eodory’s theorem ͜͜ͰɼϕΫτϧ xi − xp (i =

    1, . . . , p − 1) Λߟ͑Δͱɼp ≧ n + 2 ΑΓɼp − 1 ≧ n + 1 ≧ n Ͱ͋Δ͔Βɼ͜ΕΒͷϕΫτϧ͸Ұ࣍ैଐ Ͱ͋Δ (˞ 2)ɽΑͬͯɼগͳ͘ͱ΋Ұͭ͸ਖ਼Ͱ͋ΔΑ͏ͳ࣮਺ β1, . . . , βp−1 ʹରͯ͠ɼ p−1 ∑ i=1 βi(xi − xp) = p−1 ∑ i=1 βixi + ( − p−1 ∑ i=1 βi ) xp = 0 ͕੒Γཱͭɽ͜͜Ͱɼβp := − ∑ p−1 i=1 βi ͱ͓͘ͱ p−1 ∑ i=1 βixi + ( − p−1 ∑ i=1 βi ) xp = p−1 ∑ i=1 βixi + βpxp = p ∑ i=1 βixi = 0 ͕੒Γཱͭɽ 9 / 16
  7. ತू߹ Carath´ eodory’s theorem ·ͨɼβp = − ∑ p−1 i=1

    βi ΑΓɼ ∑ p i=1 βi = 0 Ͱ͋Δɽ͕ͨͬͯ͠ɼ೚ ҙͷ࣮਺ τ ʹରͯ͠ɼx ∈ Rn ͸࣍ͷΑ͏ʹදͤΔɽ x = p ∑ i=1 (αi − τβi) xi ͜͜Ͱɼτ := min{αi/βi | βi > 0} ͱ͠ɼα′ i := αi − τβi ͱ͓͘ɽ ͢Δͱɼx = ∑ p i=1 α′ i xi, ∑ p i=1 α′ i = 1 α′ i ≧ 0 ͕͔֬ΊΒΕΔ (˞ 3)ɽ͞Βʹɼτ ͷఆΊํΑΓɼগͳ͘ͱ΋Ұͭͷ j (1 ≦ j ≦ m) ʹ ରͯ͠ɼα′ j = 0 Ͱ͋Δ (˞ 4)ɽ͜Ε͸ɼx ͕࣮࣭తʹ p − 1 ݸͷ఺ ͷತ݁߹ͰදͤΔ͜ͱΛҙຯ͍ͯ͠Δ (˞ 5)ɽx Λತ݁߹Ͱදͨ͢ ΊʹඞཁͳϕΫτϧͷ࠷খݸ਺Λ p ݸͱԾఆͨ͠ͷͰɼ͜Ε͸ໃ६ Ͱ͋Δɽ͕ͨͬͯ͠ɼx ͸ߴʑ n + 1 ݸͷ఺ xi ͷತ݁߹ͱͯ͠ද ͤΔɽ(ূ໌ऴ) 10 / 16
  8. ತू߹ Carath´ eodory’s theorem ิ଍ ˞ 1. ิ୊Ͱ͸ߴʑ n +

    1 ݸͷ఺Ͱे෼ͱओு͍ͯ͠Δ͕ɼূ໌Ͱ͸ p(≧ n + 2) ݸͷ఺͕ඞཁͱԾఆͯ͠ໃ६Λಋ͜͏ͱ͍ͯ͠Δɽ ·ͨɼαi > 0 ͱͯ͠΋Α͍ͷ͸ɼαi = 0 ͳΔ αi ΛऔΓআ͍ͯ ΋ x ͸ͦΕҎ֎ͷ఺ͷತ݁߹ͱͯ͠ද͢͜ͱ͕Ͱ͖ΔͨΊɽ ˞ 2. x ∈ Rn ͳͷͰɼx ͸ߴʑ n ݸͷϕΫτϧͷઢܗ࿨Ͱද͢͜ͱ ͕Ͱ͖Δɽ ˞ 3. ∑ p i=1 βi = 0 Ͱ͋Δ͜ͱʹ஫ҙ͢Δͱ͍ͣΕ΋༰қʹ͔֬ΊΒ ΕΔɽ ˞ 4. τ = αj Ͱ͋Δ (i = j ͷͱ͖ʹ αi/βi ͕࠷খͱͳΔ) ͱ͢Δͱɼ α′ j = αj − αj/βj · βj = 0 ͱͳΔɽ ˞ 5. α′ j = 0 ͳͷͰɼα′ j ΛऔΓআ͍ͯ΋ x ͸ͦΕҎ֎ͷ p − 1 ݸͷ ఺ͷತ݁߹ͱͯ͠ද͢͜ͱ͕Ͱ͖Δɽ 11 / 16
  9. ತू߹ Carath´ eodory’s theorem Carath´ eodory’s theorem ΧϥςΦυϦͷఆཧͷεςʔτϝϯτ͸ҎԼͰ͋Δɽ ఆཧ 2.2:

    Carath´ eodory’s theorem(ΧϥςΦυϦͷఆཧ) ೚ҙͷू߹ S ⫅ Rn ͷತแ co S ͸ɼS ʹଐ͢Δߴʑ n + 1 ݸͷ఺ͷ ತ݁߹શମͷू߹ *2) ʹ౳͍͠ɽ • ิ୊ 2.2 ΑΓɼ༗ݶݸͷ఺ͷತ݁߹͸ɼͦΕΒͷ఺ͷதͷߴʑ n + 1 ݸͷ఺ͷತ݁߹Ͱද͢͜ͱ͕Ͱ͖Δɽ • ͕ͨͬͯ͠ɼຊఆཧΛࣔͨ͢Ίʹ͸ɼू߹ S ʹଐ͢Δ༗ݶݸͷ ఺ͷತ݁߹શମͷू߹͕ co S ʹҰக͢Δ͜ͱΛࣔͤ͹Α͍ɽ *2)͜Ε͸ S ʹଐ͢Δߴʑ n + 1 ݸͷ఺ͷબͼํͱͦΕΒͷ఺ͷತ݁߹ʹ͓͚Δ܎਺ͷબͼ ํͷ྆ํʹؔͯ͠ɼ͢΂ͯͷՄೳੑΛߟ͑Δ͜ͱΛҙຯ͍ͯ͠Δɽ 13 / 16
  10. ತू߹ Carath´ eodory’s theorem Proof of Carath´ eodory’s theorem ఆཧ

    2.2 ʹର͢Δূ໌Λ༩͑Δɽ࣍ͷ 2 ͭͷ part ʹ෼͚Δɿ 1. S ͷ༗ݶݸͷ఺ͷತ݁߹શମͷू߹͕ co S ʹؚ·ΕΔ͜ͱ 2. S ͷ༗ݶݸͷ఺ͷತ݁߹શମͷू߹͕ತͰ͋Δ͜ͱ ূ໌ɽ[part1] S ʹଐ͢Δ೚ҙͷ఺ x1, . . . , xm ʹରͯ͠ɼ x = ∑ m i=1 αixi ∈ co S Ͱ͋Δ͜ͱΛɼm ʹؔ͢Δ਺ֶతؼೲ๏Ͱ ࣔ͢ɽm = 1 ͷͱ͖ɼx = x1 ∈ S ⫅ co S Ͱ͋Δɽ࣍ʹɼS ͷ೚ҙ ͷ m ݸͷ఺ͷತ݁߹͕ co S ʹଐ͢Δ (˒) ͱԾఆͯ͠ɼ೚ҙͷ m + 1 ݸͷ఺ x1, . . . , xm+1 ∈ S ͱ ∑ m+1 i=1 αi = 1 Λຬͨ͢೚ҙͷ ඇෛ࣮਺ αi ≧ 0 (i = 1, . . . , m + 1) ʹରͯ͠ɼ఺ x = ∑ m+1 i=1 αixi ͕ co S ʹଐ͢Δ͜ͱΛࣔ͢ɽ 14 / 16
  11. ತू߹ Carath´ eodory’s theorem αm+1 = 1 ͷ৔߹͸໌Β͔Ͱ͋ΔͷͰɼαm+1 < 1

    ͷ৔߹ʹ͍ͭͯ ߟ͑Δɽ͜ͷͱ͖ɼ఺ x ͸࣍ͷΑ͏ʹද͢͜ͱ͕Ͱ͖Δɽ x = (1 − αm+1) m ∑ i=1 αi 1 − αm+1 xi + αm+1xm+1 ͜͜Ͱɼβi = αi/(1 − αm+1) ͱ͓͘ͱ m ∑ i=1 βi = 1 1 − αm+1 m ∑ i=1 αi = 1 − αm+1 1 − αm+1 = 1 βi ≧ 0 (i = 1, . . . , m) ͕͔֬ΊΒΕΔɽؼೲ๏ͷԾఆ (˒) ΑΓɼ͕࣍ࣜ੒Γཱͭɿ ˜ x := m ∑ i=1 βixi = 1 1 − αm+1 m ∑ i=1 αixi ∈ co S. ·ͨɼxm+1 ∈ co S ͔ͭ co S ͸ತू߹Ͱ͋Δ͔Βɼ (1 − αm+1)˜ x + αm+1xm+1 ∈ co S Ͱ͋Δ (ತू߹ͷఆٛ)ɽ 15 / 16
  12. ತू߹ Carath´ eodory’s theorem ࣍ʹ S ͷ༗ݶݸͷ఺ͷತ݁߹શମͷू߹͕ತͰ͋Δ͜ͱΛࣔ͢ *3)ɽ S ͷ༗ݶݸͷ఺ͷತ݁߹શମͷू߹Λ

    S′ ͱද͠ɼS′ ʹؚ·ΕΔ೚ ҙͷ 2 ఺ x, y ΛબͿɽ͜ͷͱ͖ɼ఺ x ͱ y ͸ͦΕͧΕ S ͷ఺ xi (i = 1, . . . , m) ͱ఺ yj (j = 1, . . . , l) ͷತ݁߹ͱͯ͠ɼ x = ∑ m i=1 αixi, y = ∑ l j=1 αjxj ͷΑ͏ʹද͞ΕΔɽ͞Βʹɼ೚ҙ ͷ࣮਺ λ ∈ [0, 1] ʹରͯ͠ɼ఺ z = (1 − λ)x + λy Λߟ͑Δͱɼ࣍ ͕ࣜ੒Γཱͭɿ m ∑ i=1 (1 − λ)αi + l ∑ j=1 λβj = (1 − λ) m ∑ i=1 αi 1 +λ l ∑ j=1 βj 1 = 1. S′ ͷఆٛΑΓ z ∈ S′ Ͱ͋Γɼू߹ S′ ͸ತू߹Ͱ͋Δɽ(ূ໌ऴ) *3)ತแͷఆٛΑΓ co S ͸ “S ΛؚΉ࠷খͷತू߹” Ͱ͋ΔɽΑͬͯɼS ͷ༗ݶݸͷ఺ͷತ ݁߹શମͷू߹͕ತͰ͋Δ͜ͱ͕ݴ͑Ε͹ɼͦͷू߹͕ co S ͱҰக͢Δ͜ͱ͕ؼ݁Ͱ͖Δɽ 16 / 16