Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow & DeepMind Lab & UNREAL
Search
Kosuke Miyoshi
April 20, 2017
Technology
1
2.5k
TensorFlow & DeepMind Lab & UNREAL
TensorFlowで実装したUNREALアルゴリズムでDeepMind Labの3D迷路を解く
Kosuke Miyoshi
April 20, 2017
Tweet
Share
More Decks by Kosuke Miyoshi
See All by Kosuke Miyoshi
Representation Learning with Contrastive Predictive Coding
miyosuda
1
140
Sutton "Reinforcement Learning" 2nd Edition Ch13: Policy Gradient Methods
miyosuda
0
170
Sutton "Reinforcement Learning" 2nd Edition Ch7: n-step Bootstrapping
miyosuda
0
69
Sutton "Reinforcement Learning" 2nd Edition Ch6: TD-learning
miyosuda
0
60
SCAN
miyosuda
0
760
Variational Auto Encoderでの Disentangled表現
miyosuda
0
590
Other Decks in Technology
See All in Technology
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
480
開発生産性向上! 育成を「改善」と捉えるエンジニア育成戦略
shoota
2
350
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
サーバレスアプリ開発者向けアップデートをキャッチアップしてきた #AWSreInvent #regrowth_fuk
drumnistnakano
0
190
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
260
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
180
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
310
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
150
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
Oracle Cloud Infrastructure:2024年12月度サービス・アップデート
oracle4engineer
PRO
0
180
Amazon Kendra GenAI Index 登場でどう変わる? 評価から学ぶ最適なRAG構成
naoki_0531
0
110
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
98
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Scaling GitHub
holman
458
140k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Typedesign – Prime Four
hannesfritz
40
2.4k
KATA
mclloyd
29
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
Six Lessons from altMBA
skipperchong
27
3.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Transcript
5FOTPS'MPX %FFQNJOE-BC OBSSBUJWFOJHIUTגࣜձࣾ ࡾ߁༞ 5FOTPS'MPX6TFS(SPVQ
%FFQ.JOE-BC
6/3&"- ڧԽֶशͷ"$ΞϧΰϦζϜΛϕʔεʹ&YQFSJFODF 3FQMBZΛͬͨิॿλεΫΛΈ߹Θͤͯ%໎࿏Ͱ YഒͷֶशͷߴԽΛ࣮ݱ REINFORCEMENT LEARNING WITH UNSUPERVISED AUXILIARY TASKS
Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki et. al (DeepMind, 2016)
ಈͷເ w ಈເͷதͰܦݧͨ͠ग़དྷࣄΛ࠶ݱ ϦϓϨΠ ͠ ͳ͕Βւഅ৽ൽ࣭ͷهԱͷݻఆΛߦ͍ͬͯΔ w ߠఆత൱ఆతͳใुʹؔΘΔग़དྷࣄͷເΛಘʹස ൟʹݟֶͯशΛߦ͍ͬͯΔ w
FYʮਫҿΈͰϥΠΦϯΛݟ͔͚ͯةݥͳʹ͋ͬ ͨʯ w 6/3&"-Ͱ͜ΕΛώϯτʹ͍ͯ͠Δ
ڧԽֶश ڥ ΤʔδΣϯτ "DUJPO ⬆ ➡ ⬇ ঢ়ଶ T ใु
S
6/3&"-ͷྲྀΕ %2/ "$ 6/3&"-
"$ "TZODISPOPVT"EWBODFE"DUPS$SJUJD w ෳͷڥΛඇಉظʹฒྻʹಈֶ͔ͯ͠शΛߴԽ ҆ఆԽͤͨ͞
К 1PMJDZ 7 ֤"DUJPOΛऔΔ֬ ݱࡏͷঢ়ଶՁ ⬆ ➡ ⬇ TPGUNBY MJOFBS
$POW $POW '$ -45. "$ͷωοτϫʔΫߏ
֤-PDBM/FUXPSLͰɺֶश݁Ռͷޯ EВ ͷΈΛٻΊɺ ΣΠτʹөͤͣ(MPCBMͷΣΠτ В ʹݸผʹөɻ (MPCBMͷΣΠτΛ·֤ͨ-PDBMͷΣΠτʹίϐʔɻ EВ EВ EВ
EВ В ʜ
1PMJDZ К 7ͷޯ R= = = w 73ʹ͚ۙͮΔ༷ʹߋ৽ w 37͕ਖ਼ͳΒɺऔͬͨBDUJPO͕ग़Δ֬Λ૿༷͢ʹߋ৽
37͕ෛͳΒɺऔͬͨBDUJPO͕ग़Δ֬ΛݮΒ༷͢ʹߋ৽ V network: Policy network: ˞্هͷදهͰ7(SBEJFOU%FTDFOU 1PMJDZ(SBEJFOU"TDFOUθv = θv - α * dθv, θ = θ + α * dθ 1PMJDZ 7
6/3&"- w "$ʹɺ&YQFSJFODF3FQMBZΛޮՌతʹͬͨิ ॿλεΫΛಋೖ͠ɺ͞ΒʹֶशΛߴԽͤ͞Δ w 1JYFM$POUSPM w 3FXBSE1SFEJDUJPO w 7BMVF'VODUJPO3FQMBZ
6/TVQFSWJTFE3&JOGPSDFNFOU"VYJMJBSZ-FBSOJOH
&YQFSJFODF3FQMBZ w <ঢ়ଶ "DUJPO ใु ࣍ঢ়ଶ>ͷϖΞΛେྔʹอଘ͠ ͯɺ͔ͦ͜ΒαϯϓϦϯάͯ͠ωοτϫʔΫΛֶश w %2/ɺ͜Ε͕ͳ͍ͱֶश͕҆ఆ͠ͳ͔ͬͨ w
"$Ͱ͍ͬͯͳ͍
None
1JYFM$POUSPM w ը໘ͷϐΫηϧͷมԽྔΛΑΓେ͖͘͢Δ༷ʹ͞ ͍ͤͨ w ը໘ͷϐΫηϧͷมԽΛٖࣅใुͱ͢Δิॿλε Ϋ
1JYFM$POUSPM w ը໘ΛYͷϐΫηϧάϦουʹ͚ɺάϦουຖʹ2ֶशΛߦ͏ w %VFMJOH/FUXPSLΛͬͨ2ֶश ˞1JYFM$POUSPMͰಘΒΕͨ2͕BDUJPOͷબʹΘΕΔ༁Ͱͳ͍ YͷάϦου BDUJPO ֤άϦουͷϐΫηϧมԽྔฏۉΛใुͱͨ࣌͠ͷׂҾՃࢉใु߹ܭ2
3FXBSE1SFEJDUJPO w &YQFSJFODF3FQMBZ͔Β࿈ଓͨ͠ϑϨʔϜऔΓग़ ͠ɺϑϨʔϜͷใु͕ɺਖ਼͔ෛ͔θϩ͔Λ༧ଌ ͢ΔิॿλεΫ w ༧ଌ͢Δใुɺ ʴ ʔPSͷൺ͕ʹͳΔ༷ʹαϯϓϦϯά ༗ӹͳใुΠϕϯτϨΞͰ͋ͬͯɺසൟʹαϯϓϦϯά͞ΕΔ
3FXBSE1SFEJDUJPO ࣍ͷใु͕ PSPSΛ༧ଌ
7BMVF'VODUJPO3FQMBZ w "$Ͱ͍ͬͯΔɺঢ়ଶՁ 7 ͷਪఆ "DUPS$SJUJDͷ$SJUJDଆ Λɺ&YQFSJFODF3FQMBZ͔ΒαϯϓϦϯάͨ͠ϑϨʔϜͰ࠶ ߦ͏ w 3FXBSE1SFEJDUJPOͱҧͬͯɺαϯϓϦϯάಛʹภΒͤͳ͍
ิॿλεΫɺ"DUJPOબʹӨڹ༩͑ͳ͍͕ɺϕʔ εͷ"$ͱ$POWɺ-45.ͷ8FJHIUΛڞ༗͍ͯ͠Δͷ ͰɺิॿλεΫΛೖΕΔ͜ͱʹΑΓɺͦΕΛղ͘ޮՌతͳ ಛදݱ͕ಘΒΕΔ͜ͱʹΑΓɺؒతʹ"DUJPOબʹӨ ڹΛ༩͑Δ
ଛࣦؔ #BTF"$ 7BMVF'VODUJPO 3FQMBZ 1JYFM$POUSPM YάϦου 3FXBSE 1SFEJDUJPO
None
"$ͱͷൺֱ %FFQ.JOE-BCڥʹͯฏۉͰYഒͷߴԽ
ΓΜ͝ΛऔΔͱ ϫʔϓʹ౸ୡ͢Δͱ ΛಘͯϥϯμϜͳ ॴʹϫʔϓ
࠶ݱݕূಈը IUUQTZPVUVCFY),R#F)* ˞4QFBLFS%FDLͰද͍ࣔͯ͠Δ߹ɺ63-ϦϯΫ͕ΫϦοΫͰ͖ͳ͍ͷͰɺQEGΛμϯϩʔυͯ͠ΫϦοΫ͍ͯͩ͘͠͞
1JYFM$POUSPM ֤άϦουͷલϑϨʔϜͱͷ ϐΫηϧมԽྔ ֤άϦουͷ2 औͬͨ"DUJPOʹର͢Δ2
1PMJDZ К ֤ΞΫγϣϯΛऔΔ֬ લਐ ޙୀ ࠨӈճస ࠨӈεϥΠυ ֶश͕ਐΉͱ΄΅ͷ֬Ͱ֤"DUJPOΛબͿΑ͏ʹͳͬͯ͘Δ
7BMVF'VODUJPO ݱࡏͷঢ়ଶՁ ϫʔϓ ʹۙͮ͘ʹͭΕ্͕͍ͯͬͯ͘
3FXBSE1SFEJDUJPO ϓϥεใु͕དྷΔͱ༧ଌ͍ͯ͠Δ
4PVSDF w IUUQTHJUIVCDPNNJZPTVEBVOSFBM