Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Variational Auto Encoderでの Disentangled表現
Search
Kosuke Miyoshi
November 03, 2016
Research
0
630
Variational Auto Encoderでの Disentangled表現
※ Speaker Deck内ではURLリンクがクリックできないので、クリックしたい場合はpdfをダウンロードしてください
Kosuke Miyoshi
November 03, 2016
Tweet
Share
More Decks by Kosuke Miyoshi
See All by Kosuke Miyoshi
Representation Learning with Contrastive Predictive Coding
miyosuda
1
210
Sutton "Reinforcement Learning" 2nd Edition Ch13: Policy Gradient Methods
miyosuda
0
200
Sutton "Reinforcement Learning" 2nd Edition Ch7: n-step Bootstrapping
miyosuda
0
89
Sutton "Reinforcement Learning" 2nd Edition Ch6: TD-learning
miyosuda
0
100
SCAN
miyosuda
0
830
TensorFlow & DeepMind Lab & UNREAL
miyosuda
1
2.6k
Other Decks in Research
See All in Research
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
190
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
660
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.3k
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
300
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
230
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
説明可能な機械学習と数理最適化
kelicht
2
800
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
Nullspace MPC
mizuhoaoki
1
570
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
470
Featured
See All Featured
The SEO identity crisis: Don't let AI make you average
varn
0
43
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
220
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Bash Introduction
62gerente
615
210k
Optimizing for Happiness
mojombo
379
70k
Odyssey Design
rkendrick25
PRO
0
450
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
Between Models and Reality
mayunak
1
150
Statistics for Hackers
jakevdp
799
230k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
39
A Tale of Four Properties
chriscoyier
162
23k
Transcript
7BSJBUJPOBM"VUP&ODPEFSͰͷ %JTFOUBOHMFEදݱ OBSSBUJWFOJHIUTגࣜձࣾࡾ߁༞ શΞʔΩςΫνϟୈճ4*(8#"Φϑձ
&BSMZ7JTVBM$PODFQU-FBSOJOHXJUI 6OTVQFSWJTFE%FFQ-FBSOJOH Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal,
Benigno Uria, Charles Blundell, Shakir Mohamed, Alexander Lerchner Google DeepMind, 2016 ͱΓ͋͛Δจ ˞όʔδϣϯʹΑͬͯύϥϝʔλ͕େ͖͘ҧ͍ͬͯΔɻ࠷৽ͷWΛར༻
%JTFOUBOHMFE SFQSFTFOUBUJPO w ҙຯۭؒͷදݱΛɺҐஔɺαΠζɺFUDʜͳͲͷߏ ཁૉͷύϥϝʔλʹ͔Εͨঢ়ଶͰ֫ಘ͍ͨ͠ w 7BSJBUJPOBM"VUP&ODPEFSͷજࡏมͰ͜ΕΒͷ දݱΛڭࢣͳ͠Ͱ֫ಘͰ͖ͳ͍͔ʁ
7BSJBUJPOBM"VUP&ODPEFS 9 [ 9` FODPEFS EFDPEFS αϯϓϦϯά
7BSJBUJPOBM"VUP&ODPEFS zͷࣄޙۙࣅq(z|x) (=Τϯίʔμͷग़ྗ ͱ N(0,I)ͱͷڑΛ࠷খԽ ෮ݩޡࠩΛ࠷খԽ
Ќͩͱzͷࣄޙۙࣅq(z|x)ΛΑΓ N(0,I)ʹ͚ۙͮΑ͏ͱ͢Δ ਖ਼ଇԽ߲ʹЌΛಋೖ Ќͷࢹ֮࿏ʹ͋ΔύϥϝʔλʁΛۙࣅ
w Y࠲ඪ Z࠲ඪͦΕͧΕύλʔϯ w TDBMFύλʔϯ w ճసύλʔϯ w ΦϒδΣΫτͷܗ ପԁɺϋʔτɺ࢛֯
ύλʔϯ Yͷը૾ݸΛજࡏมݸͷ7"&Ͱֶश [ FODPEFS EFDPEFS αϯϓϦϯά ͷμ,σ
Ќ Ќ
N(0, I)ʹٵ͍ࠐ·Εͯ͠·͍ͬͯΔ જࡏมݸͷ͏ͪͷͻͱͭͷЖ͚ͩΛม͑ͯΓΛݻఆ ֤જࡏม͕ύϥϝʔλ͝ͱʹ ͔Ε͍ͯΔ જࡏมͷࢄ જࡏมͷЖΛdͰ ಈ͔͢
%FFQ.JOEʹΑΔͦͷଞͷ࣮ݧ݁Ռ IUUQUJOZVSMDPNKHCZ[LF "UBSJ %໎࿏FUD…
7"&Ͱ%JTFOUBOHMF͞ΕΔʹ w ม͕࿈ଓͰຶʹαϯϓϦϯά͞Ε͍ͯΔ w ཁૉ͕౷ܭతʹಠཱ w ੑ͕ݮΒ͞Ε͍ͯΔ
w ີʹαϯϓϦϯά͞Ε͍ͯΕɺೋ͕ͭผͷΦϒδΣΫτͩͱೝࣝͰ͖Δ
ಈ͖͕࿈ଓͰີʹαϯϓϦϯά͞Ε͍ͯΕɺ ಉ͡ΦϒδΣΫτͩͱೝࣝͰ͖Δ ͜ΕΒೋͭͷύυϧಉ͡ΦϒδΣΫτͩΖ͏͔ʁ
࠶ݱݕূ ETIBQF
࠶ݱݕূ #SFBLPVU ΫϦοΫͰ࠶ੜ wϒϩοΫͷมԽ͕ͭͬͨજࡏมʹ·͕ͨͬͯऔΕ͍ͯΔ จͷ༷ͳύυϧͷಈ͖είΞͷมԽ·ͩऔΕ͍ͯͳ͍ wЌΛڧ͘͢Δͱͬͯ͘Δજࡏมݮͬͯ͘Δ͕ɺಉ࣌ʹϘέ ۩߹͕େ͖͘ͳͬͯύυϧ͕ফ͑ͯ͠·͏ [ [
[