Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SageMakerで試行錯誤する推論パイプライン
Search
moajo
August 21, 2020
Programming
0
1.3k
SageMakerで試行錯誤する推論パイプライン
moajo
August 21, 2020
Tweet
Share
Other Decks in Programming
See All in Programming
shadcn/uiを使ってReactでの開発を加速させよう!
lef237
0
350
Amazon Nova Reelの可能性
hideg
0
240
CloudNativePGがCNCF Sandboxプロジェクトになったぞ! 〜CloudNativePGの仕組みの紹介〜
nnaka2992
0
130
Immutable ActiveRecord
megane42
0
110
サーバーゆる勉強会 DBMS の仕組み編
kj455
1
330
asdf-ecspresso作って 友達が増えた話 / Fujiwara Tech Conference 2025
koluku
0
1.5k
Beyond ORM
77web
11
1.6k
선언형 UI에서의 상태관리
l2hyunwoo
0
270
ISUCON14公式反省会LT: 社内ISUCONの話
astj
PRO
0
130
月刊 競技プログラミングをお仕事に役立てるには
terryu16
1
1.2k
自動で //nolint を挿入する取り組み / Gopher's Gathering
utgwkk
1
150
functionalなアプローチで動的要素を排除する
ryopeko
1
730
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
A Tale of Four Properties
chriscoyier
157
23k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Optimising Largest Contentful Paint
csswizardry
33
3k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Transcript
SageMakerで試⾏錯誤する 推論パイプライン moajo SoftwareEngineer DeNA
⾃⼰紹介 2 • moajo • 新卒2年⽬ • 普段はmlops的な仕事をしている • 趣味はフリークライミング
3 とあるプロジェクトにて
プロジェクト要件 • 「試合」の動画を撮影 • 翌⽇までにいい感じに解析して「チーム」にフィードバック • 「チーム」が強くなる! 4
当初のつらみ • 今までPoC段階でずっと⽣EC2上でモデル実装、検証してきていた • 推論パイプラインはjobがSQSに投げられると、ベタ書き推論処理⼊りのAMIが EC2上にオートスケールしてそれを捌くというだけの質素なものだった • そしてじわじわと近づく限界 • パイプラインの全ステップが密結合
→バージョン管理困難 • ⼀番リソースを⾷うステップに合わせてインスタンス選択 →リソースの無駄 • 依存関係が分離できてない →ライブラリバージョンが固定しづらい 5
Amazon SageMaker • AWSのマネージド機械学習基盤 • GCPでいうAI platform? • 学習、推論、データセット管理など⾊々な機能が⼊ってる 6
7 とりあえず導⼊してみた
とりあえず作ってみた構成 • SageMaker Batch Transformで推論 • Batch推論はAirflowからキック • Airflowでは短いスパンでSQSをポーリングしてdagをトリガーする •
sagemakerは `[model_name]/[timestamp]` みたいなpathに書き出し 8 ポーリング 順序の管理 書き出し
とりあえず作ってみた構成はどうだったか • Airflowの管理がちょっと⾯倒くさい • composerとか使うともっと楽なのかなぁ・・・ • 書き出し先のpathが分散しててイケてなかった • ⼀回のdag実⾏の結果が分散してて⼀覧性が低かった •
BatchTransformへの書き換えが⾟い • BatchTransformは `model_fn`、`predict_fn`のような特定の名前の関数 を定義しておくといい感じに呼び出されるという仕組み • 今までベタ書きだった学習推論コードを書き換えないといけない • BatchTransform⾃体もちょっとイケてなかった(後述) 9
BatchTransformのイケてなさ • SageMaker Endpointという推論エンドポイントホスティング機能がある • BatchTransformとEndpointは同⼀コードを使い回せるようになってる • 実はBatchTransformでは内部的にはendpointを建ててそこにhttp経由でリク エストしてる •
データサイズがデカすぎたりするとhttpレイヤーから 例外が⾶んできてつらい(デフォルト設定だと) • 設定をちゃんと管理するのはそれはそれで⾯倒くさい・・・ • たぶん「もともとEndpointを普段使ってるけど、たまにそのモデルでバッチ推 論もしたい」みたいなユースケースを想定してるのでは? • 今回のケースではそもそもバッチ処理しかしない 10
修正した構成 • BatchTransformの代わりにProcessingを使う • Processingは前処理、後処理⽤サービスで、任意のコードを実⾏できる • GCPのai platform training jobとだいたい⼀緒
• 逆にモデルはマネージドじゃなくなるので、⾃分でロードしたりバージョ ン管理しないといけない • 書き出し先pathをdag_idでまとめた • [run_id]/[model_id]/にした • めちゃくちゃ快適になった。絶対こっちのほうが良い 11
修正した構成はどうだったか • コードの修正は最⼩限になった • ベタ書きコードをそのまま実⾏できる • データサイエンティストの負担減 • 割とUXは良くなったが、お⾦が結構掛かるのがつらい •
スポットインスタンス未対応 12
コスト最適化の検討 • AWS Batchを使う? • ECSでバッチ処理を実⾏できる • スポットインスタンスも使える • もはやSageMakerじゃないが・・・
• SageMaker Training jobを使う • 学習jobとして「推論」する • いいのか、こんな使い⽅して・・・ • でもスポットインスタンスも使える • 地味にProcessingより使えるインスタンスタイプが多い 13
最終的な構成 • Training jobで推論 • trainjobのマネージドな出⼒は丸ごと1ファイルに圧縮された上でs3に吐か れる • しかも出⼒なしに設定することもできない •
推論結果は1ファイルに勝⼿に圧縮してほしくないので、推論処理の⼀部と して⼿動upload • 出⼒はダミーのパスに書き捨てる • 「70% saving」とか表⽰されるのでとてもお得感がある • Processingと⽐べてデータのマウント先が制約されるが、manifest fileは使い 回せた 14
未だ残るつらさ • manifest fileがローカルモードに対応してない • ローカルでの動作検証ができない • せめて出⼒を⾮圧縮で書き出すオプションがほしい 15
16 まとめ
まとめ • 動画を⼊⼒とする推論パイプラインをSageMakerで作った • BatchTransformは純粋なバッチ処理には実は適してない • Processingは任意処理の実⾏環境として使い勝⼿が良い • Training jobはちょっと癖があるが、学習以外の⽤途にも使える
• 若⼲余分な機能と制約が付いてるがほぼ任意コードを実⾏できる • 現状sagemakerでスポットインスタンスが使えるのはtraining jobのみ • 完全マネージドで従量課⾦なので、定常コストゼロで運⽤できていい感じ 17