Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Finagle Overview
Search
Moses Nakamura
February 19, 2014
Technology
4
1.1k
Finagle Overview
Finagle Overview presented to the NY Scala Meetup
Moses Nakamura
February 19, 2014
Tweet
Share
Other Decks in Technology
See All in Technology
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
590
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
400
AWS Network Firewall Proxyを触ってみた
nagisa53
0
120
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.3k
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
250
なぜ今、コスト最適化(倹約)が必要なのか? ~AWSでのコスト最適化の進め方「目的編」~
htan
1
110
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
210
20260204_Midosuji_Tech
takuyay0ne
0
110
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.6k
Featured
See All Featured
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Ethics towards AI in product and experience design
skipperchong
2
190
Building Adaptive Systems
keathley
44
2.9k
We Have a Design System, Now What?
morganepeng
54
8k
Prompt Engineering for Job Search
mfonobong
0
160
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
72
Technical Leadership for Architectural Decision Making
baasie
1
240
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
320
Transcript
Finagle
Hello!
Finagle Extensible RPC Implement a feature once => get the
feature in every service => get the feature in every protocol
Twitter Futures trait Future[+A] { def map[B](fn: A => B):
Future[B] def flatMap[B](fn: A => Future[B]): Future[B] def rescue[B](fn: PartialFunction[Throwable, Future [B]]): Future[B] def handle[B](fn: PartialFunction[Throwable, B]): Future [B] }
Twitter Futures Interrupts Maintain context Scheduler
Finagle Abstractions Service Server Client
Service trait Service[-Req, +Rep] extends (Req => Future[Rep])
Server trait Server[Req, Rep] { def serve( addr: SocketAddress, underlying:
Service[Req, Rep] ): ListeningServer }
Client trait Client[Req, Rep] { def newService( dest: Name, label:
String ): Service[Req, Rep] }
None
Load Balancing Load balances to the least loaded Internally organized
as a heap Implicitly sends more requests to faster servers
Liveness
Failure Accrual After X failures in a row, backoff for
duration Y
Rolling Restart Support If we can’t establish a connection to
a host, blackhole it and try to reestablish in the background “Fail Fast”
Connection Pooling Tunable parameters: Low Watermark High Watermark Idle Timeout
Max Waiters
Stats Collection We collect stats on every request, including histograms
of request latency, success rate etc. See: Metrics, Metrics Everywhere (codahale)
Distributed Tracing Hackweek project inspired by Dapper Sample a small
number of requests Lets you see which upstreams are pummeling your service during an incident Profiling is good for debugging average latency Tracing is good for debugging long tail latency
None
Pipelining Redis Memcached
Service Discovery trait ListeningServer { def announce(addr: String): Future[Announcement] }
Service Discovery ZK internally Other schemes Adding finagle-serversets to your
classpath enables ZK
Next?!
finagle 6 apis ClientBuilder => Protocol.new Cargo Culting :( Finagle
notoriously hard to configure Zero configuration! Works out of the box.
old style val client: Service[HttpRequest, HttpResponse] = ClientBuilder() .codec(Http()) .hosts(address)
.hostConnectionLimit(1) .tcpConnectTimeout(50.milliseconds) .failFast(true) .daemon(true) .retries(3) .trace(ZipkinTracer.mk(host, port) .build()
finagle 6 style Http.newService(name, label)
mux A new protocol, layered on other protocols cf. thrift-mux
mux discard leasing multiplexing error encoding ping drain initialization
error encoding Means you can handle errors separately by just
reading the first byte Easy to imagine dropping errors, or minimizing copies etc
init + ping True liveness No more failfast or failure
accrual
draining Signals that a server will start draining Client knows
to stop sending new requests
multiplexing Pipelining for everyone! Connection pooling mostly disappears
discard No longer care about response Current world: close connection
Biggest cause of connection churn New world: send a discard request
leasing First target: GC avoidance Useful elsewhere too
Finagle Resources twitter.github.io/finagle finaglers@google groups
Work on Finagle github.com/twitter/finagle Docs! Github Issues!
Thanks! twitter: @mnnakamura github: mosesn email:
[email protected]
Work for Twitter! https://twitter.com/jobs We’re hiring! t.co/nymeetup
Questions? https://twitter.com/jobs/engineering t.co/nymeetup email:
[email protected]