Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
570
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
570
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
690
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
850
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
500
SRCNN: Image Super Resolution Using CNN
msnr
0
720
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
Ignite の1年間の軌跡
ktombow
0
150
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
180
Transport information Geometry: Current and Future II
lwc2017
0
190
mathematics of indirect reciprocity
yohm
1
180
凸最適化からDC最適化まで
santana_hammer
1
290
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
310
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
160
学術講演会中央大学学員会府中支部
tagtag
0
300
データマイニング - コミュニティ発見
trycycle
PRO
0
150
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
990
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
240
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Producing Creativity
orderedlist
PRO
347
40k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Writing Fast Ruby
sferik
628
62k
Designing Experiences People Love
moore
142
24k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)