Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
550
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
560
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
670
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
840
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
490
SRCNN: Image Super Resolution Using CNN
msnr
0
690
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
Introd_Img_Process_2_Frequ
hachama
0
550
Transport information Geometry: Current and Future II
lwc2017
0
150
butterfly_effect/butterfly_effect_in-house
florets1
1
180
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
380
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.5k
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
490
学術講演会中央大学学員会府中支部
tagtag
0
260
証明支援系LEANに入門しよう
unaoya
0
1.1k
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
130
WCS-LA-2024
lcolladotor
0
240
Symfony Console Facelift
chalasr
2
450
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Raft: Consensus for Rubyists
vanstee
138
7k
The Invisible Side of Design
smashingmag
299
50k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Automating Front-end Workflow
addyosmani
1370
200k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Language of Interfaces
destraynor
158
25k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)