Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
560
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
560
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
670
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
840
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
490
SRCNN: Image Super Resolution Using CNN
msnr
0
690
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
Symfony Console Facelift
chalasr
2
450
機械学習 - DBSCAN
trycycle
PRO
0
890
Machine Learning for Materials (Challenge)
aronwalsh
0
300
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
210
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
910
Hakonwa-Quaternion
hiranabe
1
110
統計学入門講座 第1回スライド
techmathproject
0
340
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
290
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
170
機械学習 - pandas入門
trycycle
PRO
0
260
Ignite の1年間の軌跡
ktombow
0
130
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
790
Featured
See All Featured
Building Adaptive Systems
keathley
43
2.6k
A better future with KSS
kneath
239
17k
Being A Developer After 40
akosma
90
590k
KATA
mclloyd
29
14k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Writing Fast Ruby
sferik
628
61k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)