Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Move Evaluation in Go Using Deep Convolutional ...
Search
Masanori YANO
July 22, 2019
Science
1
790
Move Evaluation in Go Using Deep Convolutional Neural Networks
論文LT会で作成した、CNNで囲碁の打ち手を予測する論文の説明資料です。
Masanori YANO
July 22, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
460
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
520
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
500
Free-Form Image Inpainting with Gated Convolution
msnr
0
930
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
600
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
450
SRCNN: Image Super Resolution Using CNN
msnr
0
570
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
820
大規模言語モデルの開発
chokkan
PRO
84
34k
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
360
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
200
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
250
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.3k
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
190
大規模画像テキストデータのフィルタリング手法の紹介
lyakaap
7
1.6k
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
510
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
220
様々な侵入者タイプに対応した適切な警備計画の策定 / Patrol route design considering various types of intrudes
konakalab
0
210
教師なしテンソル分解に基づく、有糸分裂後の転写再活性化におけるヒストン修飾ブックマークとしての転写因子候補の抽出法
tagtag
0
130
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Invisible Side of Design
smashingmag
298
50k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
240
A Philosophy of Restraint
colly
203
16k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
The Cost Of JavaScript in 2023
addyosmani
45
6.9k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Statistics for Hackers
jakevdp
796
220k
Designing the Hi-DPI Web
ddemaree
280
34k
Done Done
chrislema
181
16k
Building Applications with DynamoDB
mza
91
6.1k
Practical Orchestrator
shlominoach
186
10k
Transcript
画像処理&機械学習 論文LT会 #5 Move Evaluation in Go Using Deep Convolutional
Neural Networks 2019年7月22日(月) 矢農 正紀 (Masanori YANO)
論文 2 Move Evaluation in Go Using Deep Convolutional Neural
Networks 論文のURL: https://arxiv.org/abs/1412.6564 ⇒ CNNで「KGS Go Server」の打ち手を予測した論文 著者の所属は、トロント大学・Google Brain/DeepMind 選んだ理由 ・AlphaGoやAlphaZeroの手法の応用に関心あり ・CNNへの入力とするための「状態の表現」に関心あり (囲碁や将棋は、基本的なルールを把握している程度)
Google DeepMindメンバーの囲碁研究 3 [0] ICLR 2015の論文: CNNで「KGS Go Server」の打ち手を55%予測 https://arxiv.org/pdf/1412.6564.pdf
[1] AlphaGo Fan: 「KGS Go Server」の棋譜データでプロ棋士に勝利 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf [2] AlphaGo Lee: トップクラスのプロ棋士に勝利 [3] AlphaGo Master: ネット碁で、プロ棋士に無敗 [4] AlphaGo Zero: 棋譜データを使わずに強く https://deepmind.com/documents/119/agz_unformatted_nature.pdf [5] AlphaZero: 囲碁に加えて、チェスと将棋でも強く https://deepmind.com/documents/260/alphazero_preprint.pdf ⇒ AlphaZeroで、Google DeepMindの「囲碁研究は」終了 論文に関心ある場合は、赤字の論文からが読みやすいかも 今回取り上げる論文
コンピュータ囲碁のアプローチ 4 2006年以降、MCTS(モンテカルロ木探索)が主流 ・現在の状態から、乱数を含めて終局までシミュレーション ・シミュレーションするための評価関数は、MCTSでも重要 ⇒ AlphaGoは、CNN評価関数+強化学習+MCTS CNN評価関数の入力 ・サイズは、囲碁の盤面と同じく19×19 ・チャネルは、現在の状態と、それに関連する特徴量
(例) 現在の局面: 黒/白で2チャネル、空きで1チャネル CNN評価関数の出力 [1] 現在の状態の評価値(その局面が、有利か不利か) [2] 次に取るべき行動(どの手を打つべきか)
本論文のアプローチ 5 現在の状態を「36チャネル×19×19」で表現 [参考] AlphaGoは48チャネルと、13/15チャネル(対戦用) AlphaGo ZeroとAlphaZero(の囲碁)は17チャネル 対象とした「KGS Go Server」参加者のランク:
初段~9段 ⇒ 9チャネルのうち一つの19×19を全て1とし、他を全て0 CNNはゼロパディング+最初だけ5×5で、以降は全て3×3 教師データ数は27.4 millionで、テストデータ数は2 million
本論文の主な結果(1/2) 6 CNNのレイヤー数を変えたときの、棋譜との一致率 ・中間層のチャネル数は128で、比較用に3レイヤーは16も ・横軸のは、CNNの出力のうちtop-(上位の手まで)
本論文の主な結果(2/2) 7 CNNのレイヤー数を変えたときの、一致率と強さ ・中間層のチャネル数は128で、比較用に3レイヤーは16も ⇒ 12レイヤーのCNNの「55.2%」が最高 ・囲碁プログラムのGnuGoと対戦させたときの勝率も評価 ・CNNを使った既存研究や、2014年の「彩」より高い精度 ・KGSで6段の、GnuGoには完勝する打ち手と同等の精度
まとめ 8 本論文は、CNNにより高い精度で人が打つ手を予測 ・テストデータで、最高55%の精度(top-1) ・論文には、CNNの出力だけでMCTSに勝利した棋譜も ・AlphaGoの伏線でCNN+MCTSの評価も 所感 ・この時点では、入力に特徴量も多い ・CNNの最近の手法も、少し効果あるかも (AlphaGo
Zero以降はResNet) ・「画像+特徴情報」の可能性に期待 - PFNのPaintsChainer(初期) 1チャネル+色塗りヒント3チャネル - 筑波大学の飯塚さんのGLCIC 3チャネル+マスク1チャネル