Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Move Evaluation in Go Using Deep Convolutional ...
Search
Masanori YANO
July 22, 2019
Science
1
820
Move Evaluation in Go Using Deep Convolutional Neural Networks
論文LT会で作成した、CNNで囲碁の打ち手を予測する論文の説明資料です。
Masanori YANO
July 22, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
500
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
550
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
530
Free-Form Image Inpainting with Gated Convolution
msnr
0
990
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
640
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
480
SRCNN: Image Super Resolution Using CNN
msnr
0
650
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
260
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
120
サイゼミ用因果推論
lw
1
5.5k
小杉考司(専修大学)
kosugitti
2
630
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
300
オンプレミス環境にKubernetesを構築する
koukimiura
0
170
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
260
Online Feedback Optimization
floriandoerfler
0
1k
SciPyDataJapan 2025
schwalbe10
0
150
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
460
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
120
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
250
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
328
21k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
How to train your dragon (web standard)
notwaldorf
91
5.9k
Speed Design
sergeychernyshev
28
870
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
102
18k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
How to Ace a Technical Interview
jacobian
276
23k
Docker and Python
trallard
44
3.3k
What's in a price? How to price your products and services
michaelherold
245
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
Six Lessons from altMBA
skipperchong
27
3.7k
Transcript
画像処理&機械学習 論文LT会 #5 Move Evaluation in Go Using Deep Convolutional
Neural Networks 2019年7月22日(月) 矢農 正紀 (Masanori YANO)
論文 2 Move Evaluation in Go Using Deep Convolutional Neural
Networks 論文のURL: https://arxiv.org/abs/1412.6564 ⇒ CNNで「KGS Go Server」の打ち手を予測した論文 著者の所属は、トロント大学・Google Brain/DeepMind 選んだ理由 ・AlphaGoやAlphaZeroの手法の応用に関心あり ・CNNへの入力とするための「状態の表現」に関心あり (囲碁や将棋は、基本的なルールを把握している程度)
Google DeepMindメンバーの囲碁研究 3 [0] ICLR 2015の論文: CNNで「KGS Go Server」の打ち手を55%予測 https://arxiv.org/pdf/1412.6564.pdf
[1] AlphaGo Fan: 「KGS Go Server」の棋譜データでプロ棋士に勝利 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf [2] AlphaGo Lee: トップクラスのプロ棋士に勝利 [3] AlphaGo Master: ネット碁で、プロ棋士に無敗 [4] AlphaGo Zero: 棋譜データを使わずに強く https://deepmind.com/documents/119/agz_unformatted_nature.pdf [5] AlphaZero: 囲碁に加えて、チェスと将棋でも強く https://deepmind.com/documents/260/alphazero_preprint.pdf ⇒ AlphaZeroで、Google DeepMindの「囲碁研究は」終了 論文に関心ある場合は、赤字の論文からが読みやすいかも 今回取り上げる論文
コンピュータ囲碁のアプローチ 4 2006年以降、MCTS(モンテカルロ木探索)が主流 ・現在の状態から、乱数を含めて終局までシミュレーション ・シミュレーションするための評価関数は、MCTSでも重要 ⇒ AlphaGoは、CNN評価関数+強化学習+MCTS CNN評価関数の入力 ・サイズは、囲碁の盤面と同じく19×19 ・チャネルは、現在の状態と、それに関連する特徴量
(例) 現在の局面: 黒/白で2チャネル、空きで1チャネル CNN評価関数の出力 [1] 現在の状態の評価値(その局面が、有利か不利か) [2] 次に取るべき行動(どの手を打つべきか)
本論文のアプローチ 5 現在の状態を「36チャネル×19×19」で表現 [参考] AlphaGoは48チャネルと、13/15チャネル(対戦用) AlphaGo ZeroとAlphaZero(の囲碁)は17チャネル 対象とした「KGS Go Server」参加者のランク:
初段~9段 ⇒ 9チャネルのうち一つの19×19を全て1とし、他を全て0 CNNはゼロパディング+最初だけ5×5で、以降は全て3×3 教師データ数は27.4 millionで、テストデータ数は2 million
本論文の主な結果(1/2) 6 CNNのレイヤー数を変えたときの、棋譜との一致率 ・中間層のチャネル数は128で、比較用に3レイヤーは16も ・横軸のは、CNNの出力のうちtop-(上位の手まで)
本論文の主な結果(2/2) 7 CNNのレイヤー数を変えたときの、一致率と強さ ・中間層のチャネル数は128で、比較用に3レイヤーは16も ⇒ 12レイヤーのCNNの「55.2%」が最高 ・囲碁プログラムのGnuGoと対戦させたときの勝率も評価 ・CNNを使った既存研究や、2014年の「彩」より高い精度 ・KGSで6段の、GnuGoには完勝する打ち手と同等の精度
まとめ 8 本論文は、CNNにより高い精度で人が打つ手を予測 ・テストデータで、最高55%の精度(top-1) ・論文には、CNNの出力だけでMCTSに勝利した棋譜も ・AlphaGoの伏線でCNN+MCTSの評価も 所感 ・この時点では、入力に特徴量も多い ・CNNの最近の手法も、少し効果あるかも (AlphaGo
Zero以降はResNet) ・「画像+特徴情報」の可能性に期待 - PFNのPaintsChainer(初期) 1チャネル+色塗りヒント3チャネル - 筑波大学の飯塚さんのGLCIC 3チャネル+マスク1チャネル