Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Move Evaluation in Go Using Deep Convolutional ...
Search
Masanori YANO
July 22, 2019
Science
1
840
Move Evaluation in Go Using Deep Convolutional Neural Networks
論文LT会で作成した、CNNで囲碁の打ち手を予測する論文の説明資料です。
Masanori YANO
July 22, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
560
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
550
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
670
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
490
SRCNN: Image Super Resolution Using CNN
msnr
0
690
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
150
学術講演会中央大学学員会府中支部
tagtag
0
250
WCS-LA-2024
lcolladotor
0
240
機械学習 - DBSCAN
trycycle
PRO
0
860
サイゼミ用因果推論
lw
1
7.3k
データベース08: 実体関連モデルとは?
trycycle
PRO
0
630
Introd_Img_Process_2_Frequ
hachama
0
550
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
160
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
490
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
530
データベース02: データベースの概念
trycycle
PRO
2
740
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
46
14k
Code Reviewing Like a Champion
maltzj
524
40k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
180
53k
The Power of CSS Pseudo Elements
geoffreycrofte
76
5.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Statistics for Hackers
jakevdp
799
220k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
7
640
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
画像処理&機械学習 論文LT会 #5 Move Evaluation in Go Using Deep Convolutional
Neural Networks 2019年7月22日(月) 矢農 正紀 (Masanori YANO)
論文 2 Move Evaluation in Go Using Deep Convolutional Neural
Networks 論文のURL: https://arxiv.org/abs/1412.6564 ⇒ CNNで「KGS Go Server」の打ち手を予測した論文 著者の所属は、トロント大学・Google Brain/DeepMind 選んだ理由 ・AlphaGoやAlphaZeroの手法の応用に関心あり ・CNNへの入力とするための「状態の表現」に関心あり (囲碁や将棋は、基本的なルールを把握している程度)
Google DeepMindメンバーの囲碁研究 3 [0] ICLR 2015の論文: CNNで「KGS Go Server」の打ち手を55%予測 https://arxiv.org/pdf/1412.6564.pdf
[1] AlphaGo Fan: 「KGS Go Server」の棋譜データでプロ棋士に勝利 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf [2] AlphaGo Lee: トップクラスのプロ棋士に勝利 [3] AlphaGo Master: ネット碁で、プロ棋士に無敗 [4] AlphaGo Zero: 棋譜データを使わずに強く https://deepmind.com/documents/119/agz_unformatted_nature.pdf [5] AlphaZero: 囲碁に加えて、チェスと将棋でも強く https://deepmind.com/documents/260/alphazero_preprint.pdf ⇒ AlphaZeroで、Google DeepMindの「囲碁研究は」終了 論文に関心ある場合は、赤字の論文からが読みやすいかも 今回取り上げる論文
コンピュータ囲碁のアプローチ 4 2006年以降、MCTS(モンテカルロ木探索)が主流 ・現在の状態から、乱数を含めて終局までシミュレーション ・シミュレーションするための評価関数は、MCTSでも重要 ⇒ AlphaGoは、CNN評価関数+強化学習+MCTS CNN評価関数の入力 ・サイズは、囲碁の盤面と同じく19×19 ・チャネルは、現在の状態と、それに関連する特徴量
(例) 現在の局面: 黒/白で2チャネル、空きで1チャネル CNN評価関数の出力 [1] 現在の状態の評価値(その局面が、有利か不利か) [2] 次に取るべき行動(どの手を打つべきか)
本論文のアプローチ 5 現在の状態を「36チャネル×19×19」で表現 [参考] AlphaGoは48チャネルと、13/15チャネル(対戦用) AlphaGo ZeroとAlphaZero(の囲碁)は17チャネル 対象とした「KGS Go Server」参加者のランク:
初段~9段 ⇒ 9チャネルのうち一つの19×19を全て1とし、他を全て0 CNNはゼロパディング+最初だけ5×5で、以降は全て3×3 教師データ数は27.4 millionで、テストデータ数は2 million
本論文の主な結果(1/2) 6 CNNのレイヤー数を変えたときの、棋譜との一致率 ・中間層のチャネル数は128で、比較用に3レイヤーは16も ・横軸のは、CNNの出力のうちtop-(上位の手まで)
本論文の主な結果(2/2) 7 CNNのレイヤー数を変えたときの、一致率と強さ ・中間層のチャネル数は128で、比較用に3レイヤーは16も ⇒ 12レイヤーのCNNの「55.2%」が最高 ・囲碁プログラムのGnuGoと対戦させたときの勝率も評価 ・CNNを使った既存研究や、2014年の「彩」より高い精度 ・KGSで6段の、GnuGoには完勝する打ち手と同等の精度
まとめ 8 本論文は、CNNにより高い精度で人が打つ手を予測 ・テストデータで、最高55%の精度(top-1) ・論文には、CNNの出力だけでMCTSに勝利した棋譜も ・AlphaGoの伏線でCNN+MCTSの評価も 所感 ・この時点では、入力に特徴量も多い ・CNNの最近の手法も、少し効果あるかも (AlphaGo
Zero以降はResNet) ・「画像+特徴情報」の可能性に期待 - PFNのPaintsChainer(初期) 1チャネル+色塗りヒント3チャネル - 筑波大学の飯塚さんのGLCIC 3チャネル+マスク1チャネル