Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Novelty Detection Via Blurring

Masanori YANO
February 23, 2020

Novelty Detection Via Blurring

ICLR2020論文読み会のために作成していた「Novelty Detection Via Blurring」の説明資料です。

Masanori YANO

February 23, 2020
Tweet

More Decks by Masanori YANO

Other Decks in Science

Transcript

  1. 論文 2 標題: Novelty Detection Via Blurring 著者: Sungik Choi

    & Sae-Young Chung URL: https://openreview.net/forum?id=ByeNra4FDB https://arxiv.org/abs/1911.11943 ⇒ ぼかした画像を通して新規性(Novelty)を検知する論文 著者の所属は、韓国の国立大学のKAIST OpenReviewのRatingは、3名とも「6」のWeak Accept ICLR2020の「Poster」でAccept 選んだ理由 ・異常検知や新規性の検知に関心があるため
  2. 本論文の概要 3 ぼかした画像を通して新規性(Novelty)を検知 ※ 本論文のNovelty=OOD(Out of Distribution) RND(Random Network Distillation)がベースのOOD検知で、

    SVD(Singular Value Decomposition)を使用して画像をぼかす 「SVD-RND」を提案 ・シンプルで、テストのときに効果的 ・さまざまなドメインの画像で、ベースライン手法より上 次頁以降の構成 [1] SVDの概要 [2] RNDの概要 [3] 本論文のSVD-RND
  3. [1] SVDの概要(1/3) 4 SVD=線形代数の特異値分解 ※ 実数に限定して説明 任意の行列の行列に対して、以下の分解が可能[1][2] = ・は行列の直交行列 ・は行列、対角成分は1

    ≥ 2 … ≥ > 0、他は全て0 ・は行列の直交行列 直交行列とは ・転置行列が逆行列になる行列: = = ・直交行列の行ベクトルまたは列ベクトルは正規直交基底 ⇒ ベクトルの長さは1で、異なる行・列の内積は0 特異値とは ・行列または行列の固有値の平方根1 ≥ 2 … ≥ ・やは対称行列 ⇒ 対角化可能かつ固有値は非負 は行列のランク ≤ min(, )
  4. [1] SVDの概要(2/3) 5 SVD=線形代数の特異値分解 任意の行列の行列に対して、以下の分解が可能 = 特異値1 ≥ 2 …

    ≥ > 0は、値が大きいほど影響が大 ⇒ より小さいを選び、+1 以降を0にすると近似が可能 VGAサイズのRGB画像を480行640列の行列3個とみなして 特異値分解を行い、+1 以降を0にして近似した例 = 10 オリジナルの画像[6]
  5. [3] 本論文のSVD-RND(4/4) 12 メインの実験の結果 ・TPR(True Positive Rate)が95%以上のときのTNR(True Negative Rate) ・/で区切られた3個の値は、各々のOODデータセットの結果

    ・一番上の「SVD-RND」は、CelebA以外では最も良い結果 (CelebAでは幾何変換と組み合わせて実験した良い結果も) ・SVDに加え、DCT(離散コサイン変換)やGB(ガウシアン)も
  6. まとめ 13 ぼかした画像を通して新規性(Novelty)を検知 ・VQ-VAE(左の図)やRND単体(中央の図)による学習では、 ぼかした画像に高い確信度を割り当てるからと主張 (テストデータに対し、ぼかした画像の方がLossが低い) 所感 ・シンプルで面白い ・32 ×

    32ピクセルより大きな画像にも有効なのか気になる ・ランダムなネットワークが複数でも機能することが不思議 (初期値が異なると、出力の挙動は、かなり違うのでは?) ・本論文ではResNet34ベースで、表現力の高さが鍵かも この図は、学習の進行に伴う Lossの平均値の変動
  7. 参考文献 14 [1] 日本評論社の書籍「線形代数 基礎と応用」 https://www.nippyo.co.jp/shop/book/2763.html [2] 「医用画像工学」講義資料の「特異値分解」 http://www.cfme.chiba-u.jp/~haneishi/class/iyogazokougaku.html [3]

    Exploration by Random Network Distillation https://arxiv.org/abs/1810.12894 [4] Reinforcement Learning with Prediction-Based Rewards https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/ [5] Montezuma's Revenge - Atari 2600 https://www.retrogames.cz/play_124-Atari2600.php [6] Wikipediaの「平成」 https://ja.wikipedia.org/wiki/%E5%B9%B3%E6%88%90