Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
One-Class Convolutional Neural Network
Search
Masanori YANO
May 09, 2019
Science
0
1.2k
One-Class Convolutional Neural Network
論文LT会で作成したOC-CNN論文の説明資料です。
Masanori YANO
May 09, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
500
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
550
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
530
Free-Form Image Inpainting with Gated Convolution
msnr
0
990
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
640
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
820
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
480
SRCNN: Image Super Resolution Using CNN
msnr
0
650
Other Decks in Science
See All in Science
FOGBoston2024
lcolladotor
0
170
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
0
200
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
270
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
200
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
250
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
150
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
210
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
120
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
420
ICRA2024 速報
rpc
3
6.2k
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
260
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
250
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
336
57k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Statistics for Hackers
jakevdp
798
220k
Six Lessons from altMBA
skipperchong
27
3.7k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
How to train your dragon (web standard)
notwaldorf
91
5.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
Practical Orchestrator
shlominoach
186
10k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Transcript
画像処理&機械学習 論文LT会 #2 One-Class Convolutional Neural Network 2019年5月9日(木) 矢農 正紀
(Masanori YANO)
論文 2 One-Class Convolutional Neural Network 論文のURL: https://arxiv.org/abs/1901.08688 実装のURL: https://github.com/otkupjnoz/oc-cnn
⇒ 著者は、アメリカ東海岸のJohns Hopkins University IEEE Signal Processing Letters Volume 26に採録 Second AuthorのPatel助教は、異常検知の論文が多い 選んだ理由 ・異常検知の手法に関心があった ※ 1クラス分類 = 異常(Anomaly) ∪ 新規性(Novelty) ・arXiv論文を検索してみたら上位で、わりと新しかった ・つよそうな題名で、シンプルなアプローチが好み
異常検知とは 3 画像や、時系列データなどから自動的に異常を検出 ⇒ 各社がソフトウェア・サービスをリリースしている状況 [例1] ISP(システム計画研究所) ・gLupe 数十枚の正常データのみで異常検知、学習も数秒 [例2]
PFN(Preferred Networks) ・Preferred Networks Visual Inspection 良品画像100枚と不良品画像20枚から異常検知が可能 ・ファナックとの共同開発によるAI新機能 (1) モータの故障の予兆を異常度で監視: 深層学習 (2) ロボットが撮影した画像の良否判定: 機械学習 深層学習ではなく
1クラス分類(One-Class Classification)とは 4 一種類の、特定のクラスに対する分類を行う ・教師データには、負例のデータが含まれないため難しい ・異常(Anomaly)や新規性(Novelty)の検出に応用される 1クラス分類のアプローチ ・SVM(サポートベクターマシン)ベースの手法が多い ・CNNの中間層から、SVMなどを使って解く手法も多い ・オートエンコーダを使う方法が多く、最近はGANやVAEも
・One-Class Neural Networkは、最適化手順に工夫あり ・Patel助教は、他のデータセットも使う学習手法を提案 Learning Deep Features for One-Class Classification 論文のURL: https://arxiv.org/abs/1801.05365 実装例: https://qiita.com/shinmura0/items/cfb51f66b2d172f2403b ⇒ 本論文は追加データ不要で、かつend-to-endと主張
本論文の手法 5 CNNの特徴量と同じ長さの正規乱数データを加える ・ミニバッチ数が64であれば、正規乱数データも64セット ・損失関数は、合計128データの交差エントロピーの平均 ・本論文の評価では、正規分布の平均0&分散0.01で統一 One-Class Convolutional Neural Networkのアーキテクチャ
本論文の評価結果 6 新規性(Novelty)検知のデータセット3種類で評価 ・OC-CNN: 本論文の手法 ・OC-SVM+: OC-CNNの判別をNNではなくSVMで実施 (本論文の主軸はOC-CNNだが、OC-SVM+も高い性能) 学習済みのVGG16を使用して評価した結果の比較 (論文には、学習済みのAlexNetを使用した結果も掲載)
本論文で評価している3種類のデータセット
まとめ 7 1クラス分類に対する、CNNベースの新手法を提案 ・疑似的な負例のデータとして、正規乱数データを追加 ・データセットを用いた評価でも、一貫して良い性能 ・今後は、検出(detection)と分類を合体させた手法の開発 (すでに、本論文を引用した新規性の検出の論文を発表) 所感 ・シンプルで、2019年発表の新しい手法であることが驚き ・ただ、正規乱数のパラメータで境界面を調節できそうで、
異常検知に使えるのであれば、実用の観点では興味深い [参考] 深層学習の異常検知サーベイ Deep Learning for Anomaly Detection: A Survey 論文のURL: https://arxiv.org/abs/1901.03407