Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
One-Class Convolutional Neural Network
Search
Masanori YANO
May 09, 2019
Science
0
1.3k
One-Class Convolutional Neural Network
論文LT会で作成したOC-CNN論文の説明資料です。
Masanori YANO
May 09, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
560
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
560
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
680
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
840
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
500
SRCNN: Image Super Resolution Using CNN
msnr
0
700
Other Decks in Science
See All in Science
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
940
研究って何だっけ / What is Research?
ks91
PRO
1
100
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
560
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
510
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
510
mathematics of indirect reciprocity
yohm
1
150
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
200
データベース01: データベースを使わない世界
trycycle
PRO
1
670
Ignite の1年間の軌跡
ktombow
0
130
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
310
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
200
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Thoughts on Productivity
jonyablonski
69
4.7k
Music & Morning Musume
bryan
46
6.7k
Building an army of robots
kneath
306
45k
A Tale of Four Properties
chriscoyier
160
23k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
4 Signs Your Business is Dying
shpigford
184
22k
Why Our Code Smells
bkeepers
PRO
337
57k
Balancing Empowerment & Direction
lara
1
450
How to Ace a Technical Interview
jacobian
278
23k
Transcript
画像処理&機械学習 論文LT会 #2 One-Class Convolutional Neural Network 2019年5月9日(木) 矢農 正紀
(Masanori YANO)
論文 2 One-Class Convolutional Neural Network 論文のURL: https://arxiv.org/abs/1901.08688 実装のURL: https://github.com/otkupjnoz/oc-cnn
⇒ 著者は、アメリカ東海岸のJohns Hopkins University IEEE Signal Processing Letters Volume 26に採録 Second AuthorのPatel助教は、異常検知の論文が多い 選んだ理由 ・異常検知の手法に関心があった ※ 1クラス分類 = 異常(Anomaly) ∪ 新規性(Novelty) ・arXiv論文を検索してみたら上位で、わりと新しかった ・つよそうな題名で、シンプルなアプローチが好み
異常検知とは 3 画像や、時系列データなどから自動的に異常を検出 ⇒ 各社がソフトウェア・サービスをリリースしている状況 [例1] ISP(システム計画研究所) ・gLupe 数十枚の正常データのみで異常検知、学習も数秒 [例2]
PFN(Preferred Networks) ・Preferred Networks Visual Inspection 良品画像100枚と不良品画像20枚から異常検知が可能 ・ファナックとの共同開発によるAI新機能 (1) モータの故障の予兆を異常度で監視: 深層学習 (2) ロボットが撮影した画像の良否判定: 機械学習 深層学習ではなく
1クラス分類(One-Class Classification)とは 4 一種類の、特定のクラスに対する分類を行う ・教師データには、負例のデータが含まれないため難しい ・異常(Anomaly)や新規性(Novelty)の検出に応用される 1クラス分類のアプローチ ・SVM(サポートベクターマシン)ベースの手法が多い ・CNNの中間層から、SVMなどを使って解く手法も多い ・オートエンコーダを使う方法が多く、最近はGANやVAEも
・One-Class Neural Networkは、最適化手順に工夫あり ・Patel助教は、他のデータセットも使う学習手法を提案 Learning Deep Features for One-Class Classification 論文のURL: https://arxiv.org/abs/1801.05365 実装例: https://qiita.com/shinmura0/items/cfb51f66b2d172f2403b ⇒ 本論文は追加データ不要で、かつend-to-endと主張
本論文の手法 5 CNNの特徴量と同じ長さの正規乱数データを加える ・ミニバッチ数が64であれば、正規乱数データも64セット ・損失関数は、合計128データの交差エントロピーの平均 ・本論文の評価では、正規分布の平均0&分散0.01で統一 One-Class Convolutional Neural Networkのアーキテクチャ
本論文の評価結果 6 新規性(Novelty)検知のデータセット3種類で評価 ・OC-CNN: 本論文の手法 ・OC-SVM+: OC-CNNの判別をNNではなくSVMで実施 (本論文の主軸はOC-CNNだが、OC-SVM+も高い性能) 学習済みのVGG16を使用して評価した結果の比較 (論文には、学習済みのAlexNetを使用した結果も掲載)
本論文で評価している3種類のデータセット
まとめ 7 1クラス分類に対する、CNNベースの新手法を提案 ・疑似的な負例のデータとして、正規乱数データを追加 ・データセットを用いた評価でも、一貫して良い性能 ・今後は、検出(detection)と分類を合体させた手法の開発 (すでに、本論文を引用した新規性の検出の論文を発表) 所感 ・シンプルで、2019年発表の新しい手法であることが驚き ・ただ、正規乱数のパラメータで境界面を調節できそうで、
異常検知に使えるのであれば、実用の観点では興味深い [参考] 深層学習の異常検知サーベイ Deep Learning for Anomaly Detection: A Survey 論文のURL: https://arxiv.org/abs/1901.03407