Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
解説: VisProg (CVPR2023 best paper)
Search
Naoto Inoue
July 23, 2023
Research
0
840
解説: VisProg (CVPR2023 best paper)
Naoto Inoue
July 23, 2023
Tweet
Share
More Decks by Naoto Inoue
See All by Naoto Inoue
解説: Metadata Normalization
naoto0804
2
670
Other Decks in Research
See All in Research
機械学習による言語パフォーマンスの評価
langstat
6
720
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
130
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
140
129 2 th
0325
0
240
EBPMにおける生成AI活用について
daimoriwaki
0
180
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
150
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
370
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
140
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
0
140
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
720
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
360
KDD論文読み会2024: False Positive in A/B Tests
ryotoitoi
0
200
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
The Invisible Side of Design
smashingmag
298
50k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Six Lessons from altMBA
skipperchong
27
3.5k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Become a Pro
speakerdeck
PRO
25
5k
Navigating Team Friction
lara
183
14k
Why Our Code Smells
bkeepers
PRO
334
57k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
Visual Programming: Compositional visual reasoning without training CVPR2023読み会 (前編) 2023/07/23
井上 直人
2 名前: 井上 直人 (Naoto Inoue) 経歴: 博士@東大 (山﨑研) →
研究員 @ CyberAgent AI Lab 研究: グラフィックデザイン自動生成 (特にバナー) [講演][プレスリリース] [PR] 自己紹介 制御性の高いレイアウト生成 (CVPR2023) 編集工程を模したモデル (CVPR2023, highlight) インターン募集中です twitter: naoto_inoue_
3 紹介する論文 Visual Programming: Compositional visual reasoning without training •
著者: Tanmay Gupta and Ani Kembhavi • project page / code / blog • Best paper (もう一本がUniAD)
4 1. 入力: 自然言語文 (質問・指示など) 大まかな流れ
5 1. 入力: 自然言語文 (質問・指示など) 2. プログラムに変換 (by LLM) 大まかな流れ
6 1. 入力: 自然言語文 (質問・指示など) 2. プログラムに変換 (by LLM) 3.
プログラムに画像を入力して実行し出力をえる 大まかな流れ
7
8
9
10
11 • 入力文を頑張ってパーサーとhand-crafted rulesでプログラムに変換 • 解釈性の高いモジュール単位の演算の重ね合わせで解く 関連研究: Neural Module Networks
(NMN) [Andreas+, CVPR’16]
12 • 質問→プログラム をNNで直接出力 • (質問, プログラム)でなく既存VQAデータ (画像, 質問, 回答)を使う
• 生成したプログラムの実行結果の良し悪しを報酬として強化学習 関連研究: Inferring and Executing Programs for Visual Reasoning [Johnson+, ICCV'17]
13 • 入出力が複数あっても良い • 処理が簡単でも (e.g., crop) 複雑でも良い (e.g., 物体検出NN)
• ブラックボックスで,勾配が帰らなくて良い 利点 (i) 関数の自由度の高さ VisProgでの関数セット
14 既存LLMのin-context learningで動く • “Training-free” 利点 (ii) 学習不要
15 実験
16 デモ
17 デモ
18 In-context exampleは多いほど良いが,問題によってはサチる • (仮説) 少ないモジュールしか使わないタスクでは例示も少なくて良い? 実験結果
19 汎用性に全振りしているので,特定のタスクにおいて強いかはケースバイケース • 勝敗は既存手法のモデルサイズや学習データセットサイズ次第 実験結果 実験結果 (reasoning on image pairs)
20 エラー分析
21 • NN沢山使うと重くない? → yes, ただ逐次実行なので各ステップに必要なものだけ GPU に載せればOOMは回避できる(気がする) • テキストをどうやって実行するの?
→ 既存の字句解析器で分解, カスタムで作った interpreterで実行 • コード壊れてる可能性は? → 当然ある Q&A
22 実装大変じゃない? Q&A
23 • 結局タスク数が増えるとin-context examplesの必要数増えて辛いのでは ◦ VQAはモジュール扱い,結果の信頼性がある限りはある程度汎用なモジュールが良い ◦ 結局各モジュールの改善は必須 • エラー訂正,
もしくは実行結果を見てのfeedbackは可能か 議論
24 text-to-code (CODEX) + 詳細なdocstring (に実行例も含まれる)で関数情報 • 実装本体の情報は与えない (文字数の関係 +
docが正確ならいらないはず) 補足: ViperGPT
25 これも関数定義をpromptとして与えてLLMに使ってもらう試み 補足: Function Calling (OpenAI)
26 Ideas are cheap, execution is everything (≃ 素人発想玄人実行?) Revisiting
old ideas の典型例? • LLMが強くて思想にモデルが追いついてきた感じ • ここ5年くらいは,大規模データで V&L学習 → fine-tune が非常に多かった • Symbolic learningは Jiayuan Mao が地道に掘ってたけど有名とまでは言えない 雰囲気 アカデミアっぽい発想? • 企業だとlong-tailというよりはやっぱボリュームゾーンのタスクを教師あり学習で詰める のがやっぱり王道 所感
27 Scholars & Big Models: How Can Academics Adapt? •
Workshop in CVPR’23, スライドが全公開されている • 大規模モデル時代にどう戦うか?をテーマに大物がトーク ◦ 個人的なおすすめ: Jon Barron / Derek Hoiem 余談
28 2022/11: VisProg 公開 2023/3: ViperGPT 公開 & AKさんに取り上げられる 余談:
Social Media Ban 撤回問題
29 主張 • 有名・大きなところほど同僚やインフルエンサーが宣伝するので結局無意味では 反論 • 宣伝を禁じるだけでarXivへのアップロード自体は禁じられていない • 査読を歪ませないのは大事 (参考:
Michael Black先生の趣旨説明) ただ,実際自分もViperGPT知っててVisProg知らなかったので難しいところ 余談: Social Media Ban 撤回問題
30 • 学習 (勾配降下) 不要で多種多様なタスクを解く • LLMのin-context learning能力をフル活用して,neuro-symbolic approachの アップデート
• ロングテール性・解釈性・拡張性などのメリット まとめ