Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Idiomatic C++

Idiomatic C++

A collection of most wanted and widely accepted idioms and coding conventions for C++ development presented along with examples and comments. The lecture targets performance oriented codes so emphasis is on performance-friendly techniques.

6ca212f65f8f7698b1ee8ee871e2ca74?s=128

Federico Ficarelli

December 01, 2014
Tweet

Other Decks in Programming

Transcript

  1. Idiomatic C++ Federico Ficarelli http://nazavode.github.io

  2. Overview ◼ Chapter 1: Design Issues ◼ Chapter 2: Construction/Destruction/Copying

    ◼ Chapter 3: Namespaces ◼ Appendix: Tools Federico Ficarelli, Idiomatic C++ 2
  3. Bibliography ◼ Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

    ◼ Bjarne Stroustrup’s C++ Style and Technique FAQ [www.stroustrup.com/bs_faq2.html] ◼ stackoverflow.com, C++faq tag ◼ Microsoft Channel 9 [http://channel9.msdn.com/] ◼ Scott Meyers, Effective C++ ◼ cppreference.com ◼ Bjarne Stroustrup, The C++ Programming Language Federico Ficarelli, Idiomatic C++ 3
  4. Chapter 1 Design Issues: Idioms and Best Practices

  5. Resource management: the naive approach In order to guarantee resources

    release, we need to keep track of: ◼ natural return; ◼ return statements; ◼ exceptions thrown. Issues: ◼ code complexity; ◼ duplicated code (copy and paste); ◼ forces to catch and re-throw (even if we aren’t able to handle it); ◼ error prone. void foo () { char* ch = new char[100]; if (...) if (...) return; else if (...) if (...) else throw "ERROR"; // This may not be invoked... delete [] ch; } void bar () { lock.acquire(); if (...) if (...) return; else throw "ERROR"; // This may not be invoked... lock.release(); } Federico Ficarelli, Idiomatic C++ 5
  6. Resource Handler Idiom: let the stack do the work template

    <class T> class AutoDelete { public: AutoDelete (T * p = 0) : ptr_(p) {} ~AutoDelete () throw() { delete ptr_; } private: T *ptr_; DISALLOW_COPY_AND_ASSIGN(AutoDelete); }; class ScopedLock { public: ScopedLock (Lock & l) : lock_(l) { lock_.acquire(); } ~ScopedLock () throw () { lock_.release(); } private: Lock& lock_; DISALLOW_COPY_AND_ASSIGN(ScopedLock); }; Exception Safety Rule: the only code that is guaranteed to be executed after an exception is thrown are the destructors of objects residing on the stack. Federico Ficarelli, Idiomatic C++ 6
  7. Resource Aquisition Is Initialization (RAII) void foo() { AutoDelete<X> safe_del(new

    X()); if (...) if (...) return; // No need to call delete here. // Destructor will delete memory } void bar() { ScopedLock safe_lock(l); if (...) if (...) throw "ERROR"; // No need to call release here. // Destructor will release the lock } RAII: every time you need to wrap and manage a resource (memory, file, lock, etc...) in a class, let the constructor acquire and the destructor release it: the stack semantics will release the resource when it leaves the scope. Federico Ficarelli, Idiomatic C++ 7
  8. Resource Handler Idiom: file descriptor // Da Stroustrup’s C++ FAQ:

    class File_handle { FILE* p; public: File_handle(const char* n, const char* a) { p = fopen(n,a); if (p==0) throw errno; } File_handle(FILE* pp) { p = pp; if (p==0) throw errno; } ~File_handle() { fclose(p); } operator FILE*() { return p; } // ... }; void f(const char* fn) { File_handle f(fn,"rw"); // use file through f, // don't care about release // ... } Federico Ficarelli, Idiomatic C++ 8
  9. RAII: essential assumptions Single Responsibility Principle: every class should have

    a single, clear responsibility and that responsibility should be entirely encapsulated by the class. Constructor: it must acquire the managed resource and, in case of failure, raise a proper exception. The acquisition process must be RAII itself (without relying on the destructor). Destructor: it starts with a valid and constructed object (guaranteed by constructor) and must release the resource. It cannot fail. Federico Ficarelli, Idiomatic C++ 9
  10. RAII: downsides ◼ Automatic lifetime, tightly bound to stack semantics;

    ◼ each resource type needs a proper resource holder; ◼ strict ownership, resources cannot be (easily and cleanly) passed around. Federico Ficarelli, Idiomatic C++ 10
  11. Ownership: who owns you, baby? How can we explicitly express

    ownership in C++? Ownership Semantics: an object owns a resource when it has the responsibility to release that resource. struct Resource { void foo() { /* ... */} }; Resource* get_resource() { return new Resource; // Ownership implicitly transferred to the caller } int main (void) { get_resource()->foo(); // ? } // Header file // ... // AMAZING documentation about // the following function. Resource* get_resource(); // ... Federico Ficarelli, Idiomatic C++ 11
  12. Ownership semantics and smart pointers std::auto_ptr<T> (C++03) std::unique_ptr<T> (C++11) boost::scoped_ptr<T>

    (no std) const std::auto_ptr<T> (C++03) std::tr1::scoped_ptr (C++03) boost::shared_ptr<T> (no std) std::tr1::shared_ptr<T> (TR1) std::shared_ptr<T> (C++11) boost::weak_ptr<T> (no std) std::tr1::weak_ptr<T> (TR1) std::weak_ptr<T> (C++11) Strict ownership, transfer allowed Strict ownership, transfer not allowed Shared (multiple) ownership Federico Ficarelli, Idiomatic C++ 12
  13. Strict ownership: auto_ptr ◼ Same semantics as raw ptr; ◼

    when the owner goes out of scope, raw ptr is destroyed (operator delete); ◼ we can release ownership and take back the raw ptr. Strict Ownership, Transfer Allowed: the auto_ptr has semantics of strict ownership, meaning that there is only one auto_ptr instance responsible for the object's lifetime. If an auto_ptr is copied, the source loses the reference. #include <memory> int main() { std::auto_ptr<T> pt( new T ); } // <-- ~T() #include <memory> int main() { T* pt1 = new T; // pass ownership to an auto_ptr std::auto_ptr<T> pt2( pt1 ); *pt2 = 12; // same as "*pt1 = 12; pt2->SomeFunc(); // same as "pt1->SomeFunc(); // use get() to see the pointer value assert( pt1 == pt2.get() ); // use release() to take back ownership T* pt3 = pt2.release(); // no owner, no auto-delete! delete pt3; } Federico Ficarelli, Idiomatic C++ 13
  14. Strict ownership: auto_ptr int main() { auto_ptr<T> pt( new T(1)

    ); pt.reset( new T(2) );// ~T(1), owns T(2) } // ~T(2) int main() { auto_ptr<T> pt1( new T ); // pt1 owns auto_ptr<T> pt2; // pt2 non-owning pt1->DoSomething(); // ok pt2 = pt1; // pt1 -> pt2 pt2->DoSomething(); // ok pt1->DoSomething(); // !!! } // ~T() ◼ Ownership can be explicitly dropped and set on the fly (reset); ◼ a non-owning auto_ptr has the same semantics as NULL pointer: never dereference it (check with operator bool). Federico Ficarelli, Idiomatic C++ 14
  15. Strict ownership: auto_ptr ◼ No custom deleter, can manage objects

    allocated with operator new only; ◼ copying and assigning changes the owner of a resource, modifying not only the lhs but also the rhs, which breaks assignment semantics; ◼ cannot be used in stl containers. std::vector< std::auto_ptr<T> > v; /* ... */ std::sort( v.begin(), v.end() ); // ? Federico Ficarelli, Idiomatic C++ 15
  16. Strict ownership: scoped_ptr ◼ Used to show explicit ownership; ◼

    supports custom deleter; ◼ useful for automatic deletion of local objects or class members (PIMPL, RAII, etc...) ◼ can be “simulated” using the const auto_ptr Idiom. Strict Ownership, Transfer Not Allowed: the scoped_ptr has semantics of strict ownership, meaning that there is only one scoped_ptr instance responsible for the object's lifetime. The owning scoped_ptr cannot be copied, ownership cannot be transferred. const auto_ptr<T> pt1( new T ); auto_ptr<T> pt2( pt1 ); // illegal auto_ptr<T> pt3; pt3 = pt1; // illegal pt1.release(); // illegal pt1.reset( new T ); // illegal Federico Ficarelli, Idiomatic C++ 16
  17. Shared ownership: shared_ptr Shared Ownership: the shared_ptr has semantics of

    multiple ownership, meaning that multiple owning instances are allowed at a time. The instance is reference counted*: it will be destroyed only when the last owner is released. ◼ Useful when object’s lifetime is complex and not tied to a particular scope/object; ◼ supports custom deleter; ◼ can be safely used inside stl containers. Federico Ficarelli, Idiomatic C++ 17
  18. Shared ownership: shared_ptr int main() { typedef std::tr1::shared_ptr<T> sh_ptr; sh_ptr

    p1; { sh_ptr p2(new T()); // ref = 1 p1=p2; // ref = 2 } // ref = 1 } // ref = 0 -> ~T() Reference count semantics template <typename T> class ArrayDeleter { public: void operator() (T* d) const { delete [] d; } }; std::tr1::shared_ptr<double> array (new double[256], ArrayDeleter<double>()); Custom deleter Federico Ficarelli, Idiomatic C++ 18
  19. shared_ptr: Decorator Idiom template<class T> class decorator { private: T

    * p_; public: explicit pointer(T * p): p_(p) {} shared_ptr<T> operator->() const { p_->prefix(); return std::tr1::shared_ptr<T>(p_, std::mem_fn(&T::suffix)); } }; class X { private: void prefix(); void suffix(); friend class decorator<X>; public: void f(); void g(); }; int main() { X x; decorator<X> px(&x); px->f(); px->g(); } Federico Ficarelli, Idiomatic C++ 19
  20. Latent ownership: weak_ptr ◼ Expresses «weak» (latent) ownership; ◼ must

    be casted to shared_ptr before actual use (no operators); ◼ essential to break reference cycles. typedef std::tr1::shared_ptr<T> sh_ptr; struct T { sh_ptr other; }; void test() { sh_ptr p1 (new T()); sh_ptr p2 (new T()); p1->other = p2; // p1 -> p2 p2->other = p1; // p2 -> p1 } // ? typedef std::tr1::shared_ptr<T> sh_ptr; typedef std::tr1::weak_ptr<T> wk_ptr; struct T { wk_ptr other; }; void test() { sh_ptr p1 (new T()); sh_ptr p2 (new T()); if( sh_ptr p = p1->other.lock() ) { p(p2); // p1 -> p2 } if( sh_ptr p = p2->other.lock() ) { p(p1); // p2 -> p1 } } // ? Federico Ficarelli, Idiomatic C++ 20
  21. Removing ambiguity, improving robustness ◼ Makes factory functions ownership explicit;

    ◼ use any type of smart ptr (depending on your needs); ◼ improves robustness dramatically. // Header file // ... // AMAZING documentation about // the following function. std::auto_ptr<Resource> get_resource(); // ... struct Resource { void foo() { /* ... */} /* ... */ }; std::auto_ptr<Resource> get_resource() { return std::auto_ptr<Resource>( new Resource ); // Ownership EXPLICITLY transferred // to the caller } int main (void) { get_resource()->foo(); // ~Resource() } Resource Return Idiom: never return raw pointers from within functions; prefer conveying resource ownership explicitly in the return type. Federico Ficarelli, Idiomatic C++ 21
  22. Header files: how make them safe Header files should be

    written to: ◼ be self-sufficient; ◼ be portable; ◼ minimize dependencies; ◼ avoid pollution of client’s names search space. Federico Ficarelli, Idiomatic C++ 22
  23. Header files: (usually) a mess #ifndef _DATE_H_ #define _DATE_H_ #include

    <iostream> #include <math.h> #include <muslimdate.h> using namespace std; namespace calendar { class Date { private: int month_, day_, year_; friend ostream & operator<< (ostream &os, const Date& d); public: Date() { set_date( 1, 1, 1970 ); } Date(int month, int day, int year) { set_date(month, day, year); } // ... void set_date(int month, int day, int year) { month_ = month; day_ = day; year_ = year; } inline void Convert(MuslimDate* other) { // Some heavy work... // from math.h: double res = exp(somevalue); // ... *other = MuslimDate(/*...*/) } inline int get_month() { return month_; } inline get_day() { return day_; } inline get_year() { return year_; } }; ostream & operator<<(ostream &os, const Date& date) { return os << day_ << "/" << month_ << "/" << year_; } } // namespace calendar #endif // _DATE_H_ Federico Ficarelli, Idiomatic C++ 23
  24. Header files: pure header and the Inline Guard Idiom //

    date.h #ifndef IDIOMATICPP_DATE_H_16032013 // <-- #define IDIOMATICPP_DATE_H_16032013 #include <iosfwd> // <-- namespace calendar { class MuslimDate; // <-- Forward class Date { private: int month_, day_, year_; friend std::ostream & operator<< (std::ostream &os, const Date& d); public: Date(); Date(int month, int day, int year); void set_date(int month, int day, int year); void Convert(MuslimDate* other); int get_month(); int get_day(); int get_year(); }; // ... // Inline Guard Idiom #if defined(IDIOMATICCPP_USE_INLINE) #define INLINE inline #include <date-inl.h> #endif } // namespace calendar #endif // IDIOMATICPP_DATE_H_16032013 ◼ Guards: avoid clashes and reserved identifiers; ◼ prefer forward declarations; ◼ remove unused inclusions; ◼ remove using statements; ◼ be sure that the pure header is made of declarations only. Federico Ficarelli, Idiomatic C++ 24
  25. Header files: inline-only // date-inl.h #ifndef IDIOMATICPP_DATE_INL_H_16032013 // <-- #define

    IDIOMATICPP_DATE_INL_H_16032013 #include <muslimdate.h> #include <cmath> // <-- #include <date.h> INLINE void Date::Convert(MuslimDate* other) { // Some heavy work... double res = std::exp(somevalue); // <-- // ... *other = MuslimDate(/*...*/) } INLINE int Date::get_month() { return month_; } INLINE int Date::get_day() { return day_; } INLINE int Date::get_year() { return year_; } #endif // IDIOMATICPP_DATE_INL_H_16032013 ◼ Collect all inline definitions in a separate header; ◼ beware of C std headers; ◼ no using statements (qualify all identifiers); ◼ be sure that the inline header is made of inline definitions only. Federico Ficarelli, Idiomatic C++ 25
  26. Header files: complete Inline Guard #include <date.h> #if !defined(IDIOMATICCPP_USE_INLINE) //

    <-- #define INLINE #include <date-inl.h> #endif #include <iostream> using namespace std; // <-- using namespace calendar; Date::Date() { set_date( 1, 1, 1970 ); } Date::Date(int month, int day, int year) { set_date(month, day, year); } void Date::set_date(int month, int day, int year) { month_ = month; day_ = day; year_ = year; } ostream & operator<<(ostream &os, const Date& date) { return os << day_ << "/" << month_ << "/" << year_; } // ...from date.h: // ... // Inline Guard Idiom #if defined(IDIOMATICCPP_USE_INLINE) #define INLINE inline #include <date-inl.h> #endif // ... ◼ Put the Idiom’s flip side in a single implementation file; ◼ inlining can be controlled by a proper macro definition. Federico Ficarelli, Idiomatic C++ 26
  27. Decoupling ◼ The vast majority of header-related idioms care about

    decoupling; ◼ the main goal is to reduce dependencies and build time; ◼ accepted downsides could impact performance. Federico Ficarelli, Idiomatic C++ 27
  28. Decoupling: Interface Class Idiom ◼ Classical OO approach to decoupling;

    ◼ invokes implementation of an abstraction/class using runtime polymorphism; Dependency Inversion Principle: implementation classes should not depend on each other. Instead, they should depend on common abstraction represented using an interface class. Federico Ficarelli, Idiomatic C++ 28
  29. Interface Class Idiom // Abstract base class -> Interface class

    Exporter { public: virtual std::string toString(Document* doc) = 0; }; // Concrete interface implementors (Liskov) class CSVExporter : public Exporter { public: std::string toString(Document* doc) { /* ... */ } }; class XMLExporter : public Exporter { public: std::string toString(Document* doc) { /* ... */ } }; // Client (Open Close Principle) class ExportController { private: Exporter* m_exporter; // <-- public: void setExporter(Exporter* exporter); void runExport(); }; void ExportController::runExport() { Document* currentDocument = GetCurrentDocument(); // <-- Factory // (no ctors) String exportedString = m_exporter->toString(currentDocument); String exportFilePath = GetSaveFilePath(); WriteStringToFile(exporterString, exportFilePath); } ◼ DIP: ExportController (higher level interface) has no knowledge of any Exporter subclass (lower level interface); ◼ both depend on abstract Exporter interface (the common abstraction). Federico Ficarelli, Idiomatic C++ 29
  30. Private Implementation (PIMPL) ◼ The language makes private members inaccessible

    but not invisible; ◼ idiom meant to completely decouple interface (and clients) from implementation; ◼ implements a true compilation firewall; ◼ consider carefully the advantages (build time, insulation) and downsides (extra indirection level). Federico Ficarelli, Idiomatic C++ 30
  31. Private Implementation (PIMPL) // myclass.h: class MyClass { private: struct

    MyClassPIMPL; // Forward MyClassPIMPL* pimpl_; // Handle public: Handle(); Handle(const Handle&); Handle& operator=(const Handle&); ~Handle(); // Other operations... }; // myclass.cpp: #include "myclass.h" struct MyClass::MyClassPIMPL { int a, b; }; MyClass::MyClass() : pimpl_(new MyClassPIMPL()) { // do nothing } MyClass::MyClass(const MyClass& other) : pimpl_(new MyClassPIMPL(*(other.pimpl_))) { // do nothing } MyClass& MyClass::operator=(const MyClass &other) { delete pimpl_; *pimpl_ = *(other.pimpl_); return *this; } MyClass::~MyClass() { delete pimpl_; } // myclass.h: class MyClass { private: struct MyClassPIMPL; shared_ptr<MyClassPIMPL> pimpl_; public: // ... }; Federico Ficarelli, Idiomatic C++ 31
  32. Functions: avoid making friends ◼ Improves encapsulation by minimizing dependencies:

    the function cannot depend non- public members (“Don’t give away your internals”); ◼ breaks apart monolithic classes to liberate separable functionalities, reducing coupling. Function Placement: when implementing new functionalities, prefer non-member non-friend functions. When implementing functionalities, the common belief is that OO prefers members. Federico Ficarelli, Idiomatic C++ 32
  33. Functions: avoid making friends class NetworkBuffer { public: bool empty()

    { return this->device->get_packets_count() == 0; } /* ... */ }; class List { public: bool empty() { return this->length == 0; } /* ... */ }; class NetworkBuffer { public: size_t size() { return this->device->get_packets_count(); } /* ... */ }; class List { public: size_t size() { return this->length; } /* ... */ }; template<class T> bool empty( const T& s ) { return s.size() == 0; } Federico Ficarelli, Idiomatic C++ 33
  34. Functions: avoid making friends if (f needs to be virtual)

    make f a member function of C; else if (f is operator>> or operator<<) { make f a non-member function; if (f needs access to non-public members of C) make f a friend of C; } else if (f needs type conversions on its left-most argument) { make f a non-member function; if (f needs access to non-public members of C) make f a friend of C; } else if (f can be implemented via C's public interface) make f a non-member function; else make f a member function of C; Functions: the Meyer’s Algorithm [Effective C++] Federico Ficarelli, Idiomatic C++ 34
  35. Design guidelines: most wanted 1. Ensure resources are owned by

    objects. Use explicit RAII and smart pointers to expose ownership and enforce exception safety. 2. Give one entity one cohesive responsibility. 3. Keep your header files clean, don’t harm clients (nor yourself). 4. PIMPL and DIP judiciously. 5. Don’t optimize prematurely: correctness, simplicity and clarity come first. 6. Don’t pessimize prematurely. Federico Ficarelli, Idiomatic C++ 35
  36. Chapter 2 Construction/Destruction/Copying

  37. Construction/Destruction/Copying Design and implementation of the Big Four: ◼ default

    construction, ◼ copy construction; ◼ copy assignment, ◼ destruction. Pay attention: ◼ compiler can generate them for you; ◼ the language treats classes with value semantics by deafult. Federico Ficarelli, Idiomatic C++ 37
  38. Constructors: let them fail ◼ Throwing from within a constructor

    is the most safe and widespread technique; ◼ the «init method» technique is unsafe and breaks RAII and all the idioms discussed in this chapter. Failing Constructors: “You should throw an exception from a constructor whenever you cannot properly initialize (construct) an object. There is no really satisfactory alternative to exiting a constructor by a throw”. [Stroustrup’s C++ FAQ] Federico Ficarelli, Idiomatic C++ 38
  39. Constructors: let them fail Warning: the constructor itself must be

    exception-safe (without relying on destructor). class T { public: T(std::size_t len = 0) : array( new int[len] ), buffer( new char[len]) {} // <-- ? // Destructor (omitted) private: int* array; char* buffer; }; class T { public: T(std::size_t len = 0) : array( new int[len] ), buffer( new char[len]) {} // <-- ? // Destructor (omitted) private: std::shared_array<int> array; std::shared_array<char> buffer; }; Federico Ficarelli, Idiomatic C++ 39
  40. Resources: the Gold Rule class dumb_string { public: dumb_string(std::size_t size

    = 0) : // conversion/default mSize(size), mArray(mSize ? new char[mSize]() : 0) {} dumb_string(const dumb_string& other) : // copy mSize(other.mSize), mArray(mSize ? new char[mSize]() : 0) { std::copy(other.mArray, other.mArray + mSize, mArray); } virtual ~dumb_string() { // destructor delete [] mArray; } private: std::size_t mSize; char* mArray; }; int main() { dumb_string a(10); dumb_string b(a); dumb_string c; c = a; // ? } Rule Of Three: if you need to explicitly declare either the destructor, copy constructor or copy assignment operator yourself, you probably need to explicitly declare all three of them. Federico Ficarelli, Idiomatic C++ 40
  41. The easy way: non-copyable types #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&);

    \ void operator=(const TypeName&) // ... private: DISALLOW_COPY_AND_ASSIGN(T); }; template <class T> class NonCopyable { protected: NonCopyable () {} ~NonCopyable () {} // Protected non-virtual private: NonCopyable (const NonCopyable &); NonCopyable & operator = (const NonCopyable &); }; class CantCopy : private NonCopyable <CantCopy> {}; CRTP Mixin: enables Empty Base Optimization Disable Copying: whenever it makes sense, explicitly disable copy by construction and by assignment. This prevents the language from treating types with unwanted/erratic value semantics. Federico Ficarelli, Idiomatic C++ 41
  42. Copy-assignment operator: the tough spot ◼ We need to implement

    the copy-assignment operator in order to have a correct value semantics; ◼ operator= is much more hard to implement in a robust way than the copy constructor: ▪ must handle an already constructed object; ▪ in case of failure, it must leave the object in the previous consistent state (rollback). The copy-assignment operator must be transactional. Federico Ficarelli, Idiomatic C++ 42
  43. operator=: first attempt Issues: ◼ self assignment test: a symptom

    of non-robust implementation; usually very rare (performance waste); ◼ non exception-safe. dumb_string& operator=(const dumb_string& other) { if (this != &other) // <-- { // Tear down object’s state… delete [] mArray; // <-- mArray = 0; // avoid double-deletion in case of RAII // ...and setup the new one... mSize = other.mSize; // <-- mArray = mSize ? new int[mSize] : 0; std::copy(other.mArray, other.mArray + mSize, mArray); // <-- } return *this; } Federico Ficarelli, Idiomatic C++ 43
  44. operator=: exception safety dumb_string& operator=(const dumb_string& other) { if (this

    != &pOther) // <-- { // setup the new data ready before we teardown the old std::size_t newSize = other.mSize; int* newArray = newSize ? new int[newSize]() : 0; // <-- std::copy(other.mArray, other.mArray + newSize, newArray); // replace the old data (all are nothrow) delete [] mArray; mSize = newSize; mArray = newArray; } return *this; } Issues: ◼ code duplication. Federico Ficarelli, Idiomatic C++ 44
  45. operator=: Copy-and-swap Idiom friend void swap(dumb_string& first, dumb_string& second) throw()

    { std::swap(first.mSize, second.mSize); // throw() std::swap(first.mArray, second.mArray); // throw() } dumb_string& operator=(const dumb_string& other) { dumb_array temp(other); swap(*this, temp); // <-- return *this; } dumb_string& operator=(dumb_string other) // <-- { swap(*this, other); // <-- return *this; } Pass by Value: enables Copy Elision Optimization ◼ Enables strong exception-guarantee (especially the RVO version); ◼ enables type to be used with a large number of idioms. Rule-of-Three-and-a-half: whenever it makes sense, provide a no-fail swap. Federico Ficarelli, Idiomatic C++ 45
  46. Transactional programming: essential assumption Foundations Never Fail: everything that destructor,

    deallocation (e.g.: operator delete) and swap functions attempt shall succeed: never allow an error to be reported from within them. They are the foundation of transactional programming: without their resilience, no-fail rollback is impossible to implement. Federico Ficarelli, Idiomatic C++ 46
  47. Copy and destroy consistently When writing a class, consider: ◼

    Rule-of-three(and-a-half) to obtain correct and robust value semantics for complex types; ◼ «None-of-three» for POD/aggregates (let the compiler generate them for you); ◼ explicitly disable copy-construction and copy assignment. Federico Ficarelli, Idiomatic C++ 47
  48. Chapter 3 Namespaces

  49. Keep interfaces coherent ◼ The language is explicitly designed to

    enforce the Interface Principle, ADL/Koenig Lookup was added for this reason. Interface Principle: for a class T, all functions (including non-member) that both "mention" T and are "supplied with" T in the same namespace are logically part of T, because they form part of T's interface. Federico Ficarelli, Idiomatic C++ 49
  50. Argument Dependent/Koenig Name Lookup ◼ Only occurs if the normal

    lookup of an unqualified name fails to find a matching class member function. “The set of declarations [...] considered for resolution of the function name is the union of the declarations found by normal lookup with the declarations found by looking in the set of namespaces associated with the types of the function arguments”. [C++03, 3.4.2] // using namespace std; std::cout << "hello" << std::endl; Federico Ficarelli, Idiomatic C++ 50
  51. Keep interfaces coherent namespace type { class T { public:

    void f(); }; } namespace ops { T operator+( const T&, const T& ); } int main() { // using ops::operator+; type::T a, b; a.f(); type::T c = ops::operator+(a, b); } namespace ns { class T { public: void f(); }; T operator+( const T&, const T& ); } int main() { ns::T a, b; a.f(); ns::T c = a + b; } Interface Principle, corollary: keep a type and its non-member function interfaces in the same namespace. Federico Ficarelli, Idiomatic C++ 51
  52. Keep interfaces clean Depending on std implementation, ADL may choose:

    ◼ std::operator+ ◼ N::operator+ (pulled in the name search by vector<N::X>) #include <vector> namespace N { struct X {}; template <typename T> int* operator+( T, unsigned ) { /* do something */ } } int main() { std::vector<N::X> v(5); v[0]; // <-- v.begin() + 0 } Federico Ficarelli, Idiomatic C++ 52
  53. Keep interfaces clean Help prevent name-lookup accidents: protect types from

    unwanted ADL. «Dual» Interface Principle: avoid putting non-member functions that are not part of the interface of a type T into the same namespace as T, and especially never put templated functions or operators into the same namespace as a user- defined type. Federico Ficarelli, Idiomatic C++ 53
  54. Avoid namespace pollution Beware: B::g resolution (and semantics) depends on

    the headers inclusion order. // f1.h namespace A { int f(double); } // g.h namespace B { using A::f; void g(); } // f2.h namespace A { int f(int); } // g.cpp B::g() { f(1); // <-- ? } Namespace Using Principle: avoid putting using namespace directives before any inclusion directive. Since the inclusion ordering is out of implementor’s control and depends on client’s implementation, never put using namespace directives inside header files. Federico Ficarelli, Idiomatic C++ 54
  55. Appendix Tools

  56. Static analysis tools ◼ Clang Static Analyzer ◼ Mozilla dehydra

    ◼ vera++ ◼ cppcheck ◼ Google cpplint Federico Ficarelli, Idiomatic C++ 56
  57. Thank you!