$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
強化学習ライブラリ RLlibを使ってみた
Search
NearMeの技術発表資料です
PRO
December 17, 2023
0
250
強化学習ライブラリ RLlibを使ってみた
NearMeの技術発表資料です
PRO
December 17, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
3
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
160
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
22
ローカルLLM
nearme_tech
PRO
0
41
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
26
Box-Muller法
nearme_tech
PRO
1
37
Kiro触ってみた
nearme_tech
PRO
0
310
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
560
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
140
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
sira's awesome portfolio website redesign presentation
elsirapls
0
89
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
80
How to Ace a Technical Interview
jacobian
281
24k
The agentic SEO stack - context over prompts
schlessera
0
560
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
0 強化学習ライブラリ RLlibを使ってみた 2023-12-15 第71回NearMe技術勉強会 ⼤神卓也
1 エージェントが環境とのやり取りを通じて、 得られる収益を最⼤化するような⾏動を学習する 強化学習(Reinforcement Learning) 報酬 ⾏動 状態 エージェント 環境
2 • Ray(分散並列処理のライブラリ)を使って強化学習のアルゴリズム が実装されたライブラリ • 幅広いアルゴリズムが実装されてい https://docs.ray.io/en/latest/rllib/rllib-algorithms.html • マルチエージェントRL •
オフラインRL • 高機能 • 実験管理 • ハイパーパラメータ探索 RLlibとは
3 使ってみた Proximal Policy Optimization(PPO)を使ってCartPole-v1を解く
4 台を左右に動かして棒が倒れないようにがんばる 終了条件 • 棒が倒れる • 画面外に退場 • 500ステップ耐える 報酬
• つねに+1 CartPole-v1
5 Proximal Policy Optimization(PPO)を使ってCartPole-v1を解く ソースコード https://github.com/ogami334/rllib_prac 使ってみた
6 実験管理 • Weights & Biases https://docs.ray.io/en/latest/tune/examples/tune-wandb.html 他にもいろいろな実験管理ツールと • Comet
• MLflow
7 PPOのアルゴリズム(ざっくり) 1. 環境とやり取りして経験を集める 2. 経験をもとに,収益が高くなる行動をとるように方策を更新 1, 2 を繰り返す 並列訓練
8 PPOのアルゴリズム(ざっくり) 1. 環境とやり取りして経験を集める ←複数CPUで並列実行 2. 経験をもとに,収益が高くなる行動をとるように方策を更新 1, 2 を繰り返す
並列訓練
9 並列訓練 # 6CPUで並列に経験を集めることで高速化 PPOConfig().rollouts(num_rollout_workers=6)
10 感想 • 書き方の流儀が3パターンほどあり、わかりにくい • 今回紹介した以外にも便利な機能がある • tuned examples https://github.com/ray-project/ray/tree/master/rllib/tuned_examples
• 使いこなせたら手軽に幅広いRLタスクをこなせそう
11 Thank you