Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
強化学習ライブラリ RLlibを使ってみた
Search
NearMeの技術発表資料です
PRO
December 17, 2023
0
220
強化学習ライブラリ RLlibを使ってみた
NearMeの技術発表資料です
PRO
December 17, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
1
22
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
6
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
87
Rust 並列強化学習
nearme_tech
PRO
0
23
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
140
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
39
Hub Labeling による高速経路探索
nearme_tech
PRO
0
94
Build an AI agent with Mastra
nearme_tech
PRO
0
78
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
44
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
Optimizing for Happiness
mojombo
379
70k
Balancing Empowerment & Direction
lara
3
610
Designing for humans not robots
tammielis
253
25k
Making Projects Easy
brettharned
117
6.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6.1k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Why Our Code Smells
bkeepers
PRO
339
57k
Transcript
0 強化学習ライブラリ RLlibを使ってみた 2023-12-15 第71回NearMe技術勉強会 ⼤神卓也
1 エージェントが環境とのやり取りを通じて、 得られる収益を最⼤化するような⾏動を学習する 強化学習(Reinforcement Learning) 報酬 ⾏動 状態 エージェント 環境
2 • Ray(分散並列処理のライブラリ)を使って強化学習のアルゴリズム が実装されたライブラリ • 幅広いアルゴリズムが実装されてい https://docs.ray.io/en/latest/rllib/rllib-algorithms.html • マルチエージェントRL •
オフラインRL • 高機能 • 実験管理 • ハイパーパラメータ探索 RLlibとは
3 使ってみた Proximal Policy Optimization(PPO)を使ってCartPole-v1を解く
4 台を左右に動かして棒が倒れないようにがんばる 終了条件 • 棒が倒れる • 画面外に退場 • 500ステップ耐える 報酬
• つねに+1 CartPole-v1
5 Proximal Policy Optimization(PPO)を使ってCartPole-v1を解く ソースコード https://github.com/ogami334/rllib_prac 使ってみた
6 実験管理 • Weights & Biases https://docs.ray.io/en/latest/tune/examples/tune-wandb.html 他にもいろいろな実験管理ツールと • Comet
• MLflow
7 PPOのアルゴリズム(ざっくり) 1. 環境とやり取りして経験を集める 2. 経験をもとに,収益が高くなる行動をとるように方策を更新 1, 2 を繰り返す 並列訓練
8 PPOのアルゴリズム(ざっくり) 1. 環境とやり取りして経験を集める ←複数CPUで並列実行 2. 経験をもとに,収益が高くなる行動をとるように方策を更新 1, 2 を繰り返す
並列訓練
9 並列訓練 # 6CPUで並列に経験を集めることで高速化 PPOConfig().rollouts(num_rollout_workers=6)
10 感想 • 書き方の流儀が3パターンほどあり、わかりにくい • 今回紹介した以外にも便利な機能がある • tuned examples https://github.com/ray-project/ray/tree/master/rllib/tuned_examples
• 使いこなせたら手軽に幅広いRLタスクをこなせそう
11 Thank you