Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
強化学習ライブラリ RLlibを使ってみた
Search
NearMeの技術発表資料です
PRO
December 17, 2023
0
250
強化学習ライブラリ RLlibを使ってみた
NearMeの技術発表資料です
PRO
December 17, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLM
nearme_tech
PRO
0
11
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
8
Box-Muller法
nearme_tech
PRO
1
22
Kiro触ってみた
nearme_tech
PRO
0
110
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
420
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
100
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
50
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
560
Rust 並列強化学習
nearme_tech
PRO
0
37
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Designing for humans not robots
tammielis
254
26k
Designing Experiences People Love
moore
142
24k
Typedesign – Prime Four
hannesfritz
42
2.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Statistics for Hackers
jakevdp
799
220k
Producing Creativity
orderedlist
PRO
348
40k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Docker and Python
trallard
46
3.6k
Documentation Writing (for coders)
carmenintech
76
5.1k
The Cult of Friendly URLs
andyhume
79
6.7k
Transcript
0 強化学習ライブラリ RLlibを使ってみた 2023-12-15 第71回NearMe技術勉強会 ⼤神卓也
1 エージェントが環境とのやり取りを通じて、 得られる収益を最⼤化するような⾏動を学習する 強化学習(Reinforcement Learning) 報酬 ⾏動 状態 エージェント 環境
2 • Ray(分散並列処理のライブラリ)を使って強化学習のアルゴリズム が実装されたライブラリ • 幅広いアルゴリズムが実装されてい https://docs.ray.io/en/latest/rllib/rllib-algorithms.html • マルチエージェントRL •
オフラインRL • 高機能 • 実験管理 • ハイパーパラメータ探索 RLlibとは
3 使ってみた Proximal Policy Optimization(PPO)を使ってCartPole-v1を解く
4 台を左右に動かして棒が倒れないようにがんばる 終了条件 • 棒が倒れる • 画面外に退場 • 500ステップ耐える 報酬
• つねに+1 CartPole-v1
5 Proximal Policy Optimization(PPO)を使ってCartPole-v1を解く ソースコード https://github.com/ogami334/rllib_prac 使ってみた
6 実験管理 • Weights & Biases https://docs.ray.io/en/latest/tune/examples/tune-wandb.html 他にもいろいろな実験管理ツールと • Comet
• MLflow
7 PPOのアルゴリズム(ざっくり) 1. 環境とやり取りして経験を集める 2. 経験をもとに,収益が高くなる行動をとるように方策を更新 1, 2 を繰り返す 並列訓練
8 PPOのアルゴリズム(ざっくり) 1. 環境とやり取りして経験を集める ←複数CPUで並列実行 2. 経験をもとに,収益が高くなる行動をとるように方策を更新 1, 2 を繰り返す
並列訓練
9 並列訓練 # 6CPUで並列に経験を集めることで高速化 PPOConfig().rollouts(num_rollout_workers=6)
10 感想 • 書き方の流儀が3パターンほどあり、わかりにくい • 今回紹介した以外にも便利な機能がある • tuned examples https://github.com/ray-project/ray/tree/master/rllib/tuned_examples
• 使いこなせたら手軽に幅広いRLタスクをこなせそう
11 Thank you