Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最短経路探索が表していること
Search
NearMeの技術発表資料です
PRO
July 26, 2022
Technology
0
160
最短経路探索が表していること
NearMeの技術発表資料です
PRO
July 26, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
210
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
24
ローカルLLM
nearme_tech
PRO
0
43
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
27
Box-Muller法
nearme_tech
PRO
1
39
Kiro触ってみた
nearme_tech
PRO
0
350
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
580
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Other Decks in Technology
See All in Technology
2025年 山梨の技術コミュニティを振り返る
yuukis
0
130
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
14
4.7k
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
260
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
6
2.4k
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.3k
AI との良い付き合い方を僕らは誰も知らない
asei
1
320
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.9k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
240
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
220
Claude Codeを使った情報整理術
knishioka
15
11k
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
340
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Faster Mobile Websites
deanohume
310
31k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Facilitating Awesome Meetings
lara
57
6.7k
BBQ
matthewcrist
89
9.9k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Site-Speed That Sticks
csswizardry
13
1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
410
Transcript
0 最短経路探索が表していること 2022-07-22 第7回NearMe技術勉強会 Tomoki Kishikawa / Kappa
1 目次 【今回】 • 最短経路探索の概要 • 交通工学で考える最適状態(UEとSO) 【次回以降】 • Dijkstra法のアルゴリズム
• アルゴリズムで難しいこと
2 最短経路探索とは? • 2つのノード間でもっとも経路費用の低い経路を探す問題 ◦ 最適化問題の1種 O D 2 3
12 5 2 6 4 6 2
3 最短経路探索アルゴリズム • ラベル確定法 ◦ Dijkstra法 計算量:O(V2)(オリジナル) O((E+V)log V)(優先度付きキュー(二分ヒープ)) O(E+Vlog
V)(優先度付きキュー(フィボナッチヒープ)) • ラベル修正法 ◦ Bellman-Ford法 計算量:O(E×V) ※V: ノード数, E: リンク数
4 最短経路が表していること 交通工学で考えられる2つの最適状態 利用者均衡 (UE:User Equilibrium) システム最適配分 (SO:System-Optimization) 各利用者の移動時間が最短 全員の移動時間の合計が最短
5 UEとSOから現れる面白いパラドックス Braeseのパラドックス O D x/100 45 45 x/100 O
D x/100 45 45 x/100 0 4000人の需要 2000人ずつ移動して65分 全員がx/100の方で移動して80分
6 最短経路が表していること 最短経路はどっち……? 利用者均衡 (UE:User Equilibrium) システム最適配分 (SO:System-Optimization) 各利用者の移動時間が最短 全員の移動時間の合計が最短
7 • 松井寛編: 交通ネットワークの均衡分析—最新の理論と解法—, 1998. • Wikipedia「ブライスのパラドックス」(2022/07/22閲覧) • 久野 誉人,
繁野 麻衣子, 後藤 順哉: IT Text 数理最適化, オーム社, 2012. 参考文献
8 Thank you