$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
5分で分かるBloom Filter
Search
neo-nanikaka
July 22, 2014
Programming
1
4k
5分で分かるBloom Filter
neo-nanikaka
July 22, 2014
Tweet
Share
More Decks by neo-nanikaka
See All by neo-nanikaka
クリエイタープラットフォーム BOOTH、FANBOXでの 銀行口座支払いとペイアウトの事例 / PayPal Tech Meetup 11 pixiv
neo_nanikaka
0
2k
Other Decks in Programming
See All in Programming
マスタデータ問題、マイクロサービスでどう解くか
kts
0
100
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
720
chocoZAPサービス予約システムをNuxtで内製化した話
rizap_tech
0
140
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
18
7.5k
Integrating WordPress and Symfony
alexandresalome
0
150
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
250
エディターってAIで操作できるんだぜ
kis9a
0
730
251126 TestState APIってなんだっけ?Step Functionsテストどう変わる?
east_takumi
0
320
30分でDoctrineの仕組みと使い方を完全にマスターする / phpconkagawa 2025 Doctrine
ttskch
4
880
AIコーディングエージェント(NotebookLM)
kondai24
0
200
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.7k
認証・認可の基本を学ぼう後編
kouyuume
0
240
Featured
See All Featured
BBQ
matthewcrist
89
9.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Automating Front-end Workflow
addyosmani
1371
200k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Code Review Best Practice
trishagee
74
19k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
The Language of Interfaces
destraynor
162
25k
Transcript
5分でわかる Bloom Filter ※個人差があります
Bloom Filter 適用例
BOOTHアイコン BOOTHに商品が存在するタグ集合に 作品についたタグが含まれているかを判定 百科事典アイコン pixiv百科事典に記事が存在するタグ集合に 作品についたタグが含まれているかを判定 Bloom Filter 適用例
Burton H. Bloom (1970) 要素が集合の要素に含まれるかを判定する確率的アルゴリズム その他の要素判定アルゴリズム 探索木、ハッシュテーブル、線形リスト etc... Bloom Filter
準備 m ビットの配列 (初期値は0) 値が一様に分布する k 個のハッシュ関数 Bloom Filter 0
0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10 2 6 f(x) % m g(x) % m
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10 2 6 f(x) % m 4 g(x) % m 8
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 g(x) % m 8
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 2 g(x) % m 8 4
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 2 g(x) % m 8 4 2回目だけど気にしたら負け ↑
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 g(x) % m 8
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 g(x) % m 8 4番目と8番目のビットが1なので 2 は集合に存在する!!
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4 2番目と4番目のビットが1なので 10 は集合に存在する!?
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4 10 は偽陽性の誤検出
特徴 必要メモリ量が集合要素数に比例しない 追加したい要素そのものを保持するわけではない 要素を追加しても使用メモリ量が増えない 追加・判定処理に必要な時間が集合要素数と無関係 要素の削除はできない => CountingFilter 要素を追加しすぎると誤検出の確率が上がる 偽陽性誤検出
偽陰性誤検出は絶対に起きない Bloom Filter
気になる誤検出確率: m : ビット数 n : 想定される登録要素の最大数 k: 誤検出確率を最小にする最適ハッシュ関数の数 (近似)
k ≒ 0.7 * m / n Bloom Filter
備考: BloomFilterの性能は明らかにハッシュ関数の性能に左右される 誤検出確率は一様に分布する優秀なハッシュ関数を想定している Bloom Filter
初期実装: 2,000,000ビットくらいの1本のブルームフィルタ でかすぎて(250KBくらい) apc_fetchに 6ms かかる →メッチャ重い →ブルームフィルタ要らない子 BOOTHアイコン適用裏話
リベンジ: 8192ビットのブルームフィルタを100本用意する →あるタグの存在判定に必要なのは1本だけ どのブルームフィルタを使えばいいのか? →タグ名をハッシュ化して求める 1本当たり1KBなのでapc_fetch問題もクリア (0.01ms) 誤検出確率は 0.1% →ブルームフィルタはやれば出来る子
BOOTHアイコン適用裏話