Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
5分で分かるBloom Filter
Search
neo-nanikaka
July 22, 2014
Programming
1
4k
5分で分かるBloom Filter
neo-nanikaka
July 22, 2014
Tweet
Share
More Decks by neo-nanikaka
See All by neo-nanikaka
クリエイタープラットフォーム BOOTH、FANBOXでの 銀行口座支払いとペイアウトの事例 / PayPal Tech Meetup 11 pixiv
neo_nanikaka
0
2k
Other Decks in Programming
See All in Programming
Developing static sites with Ruby
okuramasafumi
0
270
Cell-Based Architecture
larchanjo
0
110
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
400
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
110
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
エディターってAIで操作できるんだぜ
kis9a
0
720
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
430
Microservices Platforms: When Team Topologies Meets Microservices Patterns
cer
PRO
1
1k
認証・認可の基本を学ぼう前編
kouyuume
0
200
JETLS.jl ─ A New Language Server for Julia
abap34
1
370
FluorTracer / RayTracingCamp11
kugimasa
0
230
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
350
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Mobile First: as difficult as doing things right
swwweet
225
10k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Into the Great Unknown - MozCon
thekraken
40
2.2k
The Invisible Side of Design
smashingmag
302
51k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Automating Front-end Workflow
addyosmani
1371
200k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Six Lessons from altMBA
skipperchong
29
4.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Transcript
5分でわかる Bloom Filter ※個人差があります
Bloom Filter 適用例
BOOTHアイコン BOOTHに商品が存在するタグ集合に 作品についたタグが含まれているかを判定 百科事典アイコン pixiv百科事典に記事が存在するタグ集合に 作品についたタグが含まれているかを判定 Bloom Filter 適用例
Burton H. Bloom (1970) 要素が集合の要素に含まれるかを判定する確率的アルゴリズム その他の要素判定アルゴリズム 探索木、ハッシュテーブル、線形リスト etc... Bloom Filter
準備 m ビットの配列 (初期値は0) 値が一様に分布する k 個のハッシュ関数 Bloom Filter 0
0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10 2 6 f(x) % m g(x) % m
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10 2 6 f(x) % m 4 g(x) % m 8
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 g(x) % m 8
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 2 g(x) % m 8 4
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 2 g(x) % m 8 4 2回目だけど気にしたら負け ↑
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 g(x) % m 8
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 g(x) % m 8 4番目と8番目のビットが1なので 2 は集合に存在する!!
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4 2番目と4番目のビットが1なので 10 は集合に存在する!?
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4 10 は偽陽性の誤検出
特徴 必要メモリ量が集合要素数に比例しない 追加したい要素そのものを保持するわけではない 要素を追加しても使用メモリ量が増えない 追加・判定処理に必要な時間が集合要素数と無関係 要素の削除はできない => CountingFilter 要素を追加しすぎると誤検出の確率が上がる 偽陽性誤検出
偽陰性誤検出は絶対に起きない Bloom Filter
気になる誤検出確率: m : ビット数 n : 想定される登録要素の最大数 k: 誤検出確率を最小にする最適ハッシュ関数の数 (近似)
k ≒ 0.7 * m / n Bloom Filter
備考: BloomFilterの性能は明らかにハッシュ関数の性能に左右される 誤検出確率は一様に分布する優秀なハッシュ関数を想定している Bloom Filter
初期実装: 2,000,000ビットくらいの1本のブルームフィルタ でかすぎて(250KBくらい) apc_fetchに 6ms かかる →メッチャ重い →ブルームフィルタ要らない子 BOOTHアイコン適用裏話
リベンジ: 8192ビットのブルームフィルタを100本用意する →あるタグの存在判定に必要なのは1本だけ どのブルームフィルタを使えばいいのか? →タグ名をハッシュ化して求める 1本当たり1KBなのでapc_fetch問題もクリア (0.01ms) 誤検出確率は 0.1% →ブルームフィルタはやれば出来る子
BOOTHアイコン適用裏話