Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
5分で分かるBloom Filter
Search
neo-nanikaka
July 22, 2014
Programming
1
4k
5分で分かるBloom Filter
neo-nanikaka
July 22, 2014
Tweet
Share
More Decks by neo-nanikaka
See All by neo-nanikaka
クリエイタープラットフォーム BOOTH、FANBOXでの 銀行口座支払いとペイアウトの事例 / PayPal Tech Meetup 11 pixiv
neo_nanikaka
0
2k
Other Decks in Programming
See All in Programming
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
170
Developing static sites with Ruby
okuramasafumi
0
330
愛される翻訳の秘訣
kishikawakatsumi
3
350
gunshi
kazupon
1
120
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
450
AIエージェントの設計で注意するべきポイント6選
har1101
5
2.4k
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
380
AIコーディングエージェント(NotebookLM)
kondai24
0
230
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
170
クラウドに依存しないS3を使った開発術
simesaba80
0
170
認証・認可の基本を学ぼう後編
kouyuume
0
250
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
400
Featured
See All Featured
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
960
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
37
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
70
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
74
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
[SF Ruby Conf 2025] Rails X
palkan
0
630
Transcript
5分でわかる Bloom Filter ※個人差があります
Bloom Filter 適用例
BOOTHアイコン BOOTHに商品が存在するタグ集合に 作品についたタグが含まれているかを判定 百科事典アイコン pixiv百科事典に記事が存在するタグ集合に 作品についたタグが含まれているかを判定 Bloom Filter 適用例
Burton H. Bloom (1970) 要素が集合の要素に含まれるかを判定する確率的アルゴリズム その他の要素判定アルゴリズム 探索木、ハッシュテーブル、線形リスト etc... Bloom Filter
準備 m ビットの配列 (初期値は0) 値が一様に分布する k 個のハッシュ関数 Bloom Filter 0
0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10 2 6 f(x) % m g(x) % m
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 0 0 0 0 0 0 0 m = 10 2 6 f(x) % m 4 g(x) % m 8
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 g(x) % m 8
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 0 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 2 g(x) % m 8 4
要素 x を追加する O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す1箇所のビットに1を立てる hi % m ( 1 <= i <= k ) 例: 2 と 6 を追加する f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 6 f(x) % m 4 2 g(x) % m 8 4 2回目だけど気にしたら負け ↑
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 g(x) % m 8
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 g(x) % m 8 4番目と8番目のビットが1なので 2 は集合に存在する!!
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4 2番目と4番目のビットが1なので 10 は集合に存在する!?
要素 x の存在判定をする O (k) x をk 個のハッシュ関数に渡して得られた値をh1, h2, …
, hk とする ハッシュ値の示す全てのビットが1であれば true 例: 2 と 10 をチェックする f(x) = 2 * x g(x) = 4 * x Bloom Filter 0 1 0 1 0 0 0 1 0 0 m = 10 2 10 f(x) % m 4 2 g(x) % m 8 4 10 は偽陽性の誤検出
特徴 必要メモリ量が集合要素数に比例しない 追加したい要素そのものを保持するわけではない 要素を追加しても使用メモリ量が増えない 追加・判定処理に必要な時間が集合要素数と無関係 要素の削除はできない => CountingFilter 要素を追加しすぎると誤検出の確率が上がる 偽陽性誤検出
偽陰性誤検出は絶対に起きない Bloom Filter
気になる誤検出確率: m : ビット数 n : 想定される登録要素の最大数 k: 誤検出確率を最小にする最適ハッシュ関数の数 (近似)
k ≒ 0.7 * m / n Bloom Filter
備考: BloomFilterの性能は明らかにハッシュ関数の性能に左右される 誤検出確率は一様に分布する優秀なハッシュ関数を想定している Bloom Filter
初期実装: 2,000,000ビットくらいの1本のブルームフィルタ でかすぎて(250KBくらい) apc_fetchに 6ms かかる →メッチャ重い →ブルームフィルタ要らない子 BOOTHアイコン適用裏話
リベンジ: 8192ビットのブルームフィルタを100本用意する →あるタグの存在判定に必要なのは1本だけ どのブルームフィルタを使えばいいのか? →タグ名をハッシュ化して求める 1本当たり1KBなのでapc_fetch問題もクリア (0.01ms) 誤検出確率は 0.1% →ブルームフィルタはやれば出来る子
BOOTHアイコン適用裏話