Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Could simplified stimuli change how the brain p...
Search
David Nicholson
November 23, 2021
Research
0
87
Could simplified stimuli change how the brain performs visual search tasks?
flash talk for Neuromatch 4.0
David Nicholson
November 23, 2021
Tweet
Share
More Decks by David Nicholson
See All by David Nicholson
VocalPy: a core Python package for acoustic communication research
nickledave
0
37
sorry-no-chatgpt-PyCon-2023-lightning-talk
nickledave
0
73
pyvanot
nickledave
0
71
vak: software for automated annotation of vocalizations with neural networks
nickledave
0
88
scipy-2019-visual-search-Tensorflow-talk
nickledave
0
98
scipy-2019-lightning-talk
nickledave
0
140
Automated Annotation of Animal Vocalizations
nickledave
0
78
Neural networks for segmentation of vocalizations
nickledave
0
410
Teaching Data Science to Scientists
nickledave
0
190
Other Decks in Research
See All in Research
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
320
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
超高速データサイエンス
matsui_528
1
320
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
18
8.9k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
310
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
680
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
720
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
380
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
330
Featured
See All Featured
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
290
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
26
Between Models and Reality
mayunak
0
150
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
99
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
Become a Pro
speakerdeck
PRO
31
5.7k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
160
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Transcript
Could simplified stimuli change how the brain performs visual search
tasks? David Nicholson NMC4 December 2021
Introduction Visual search: a real-world behavior we engage in constantly
Introduction In the laboratory, visual search tasks use simplified stimuli
Peelen and Kastner, 2014
Introduction Hallmark of behavior exhibited in laboratory visual search tasks:
set size effects
Introduction The visual system is optimized to search natural images
Peelen and Kastner, 2014
Introduction → simplified stimuli change visual search behavior How could
we test this? Peelen and Kastner, 2014
Methods deep neural networks for image classification AlexNet DNN architecture
"plane"
Methods ~ state-of-the-art models of object recognition in the visual
system adapted from DiCarlo and Cox 2007 AlexNet ANN architecture: ~ primate ventral visual stream "retina space" "inferior temporal cortex space" separating hyperplane
Methods deep neural networks optimized for image classification (Kell McDermott
2019) step
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks https://github.com/NickleDave/searchstims
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks the Visual Search Difficulty dataset "How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image". Ionescu, et al. 2016
Results DNNs exhibit set size effects
Results Set size effects result from optimizing DNNs to classify
natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Discussion Mismatch may be impeding our ability to understand visual
search behavior
Discussion Future work could compare behavior of different models on
a benchmark set of stimuli and tasks Guided Search 6.0, Wolfe 2021
NickleDave Thank you! Lifelong Learning Machines program, DARPA HR0011-18-2-0019 2017
William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone and L. Smith, Indiana University Bloomington. nicholdav