Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Could simplified stimuli change how the brain p...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
David Nicholson
November 23, 2021
Research
0
88
Could simplified stimuli change how the brain performs visual search tasks?
flash talk for Neuromatch 4.0
David Nicholson
November 23, 2021
Tweet
Share
More Decks by David Nicholson
See All by David Nicholson
VocalPy: a core Python package for acoustic communication research
nickledave
0
37
sorry-no-chatgpt-PyCon-2023-lightning-talk
nickledave
0
74
pyvanot
nickledave
0
71
vak: software for automated annotation of vocalizations with neural networks
nickledave
0
89
scipy-2019-visual-search-Tensorflow-talk
nickledave
0
100
scipy-2019-lightning-talk
nickledave
0
140
Automated Annotation of Animal Vocalizations
nickledave
0
79
Neural networks for segmentation of vocalizations
nickledave
0
410
Teaching Data Science to Scientists
nickledave
0
190
Other Decks in Research
See All in Research
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
710
説明可能な機械学習と数理最適化
kelicht
2
940
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
R&Dチームを起ち上げる
shibuiwilliam
1
160
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
音声感情認識技術の進展と展望
nagase
0
470
Featured
See All Featured
Tell your own story through comics
letsgokoyo
1
810
GitHub's CSS Performance
jonrohan
1032
470k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
94
Agile that works and the tools we love
rasmusluckow
331
21k
Automating Front-end Workflow
addyosmani
1371
200k
Speed Design
sergeychernyshev
33
1.5k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
A designer walks into a library…
pauljervisheath
210
24k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Transcript
Could simplified stimuli change how the brain performs visual search
tasks? David Nicholson NMC4 December 2021
Introduction Visual search: a real-world behavior we engage in constantly
Introduction In the laboratory, visual search tasks use simplified stimuli
Peelen and Kastner, 2014
Introduction Hallmark of behavior exhibited in laboratory visual search tasks:
set size effects
Introduction The visual system is optimized to search natural images
Peelen and Kastner, 2014
Introduction → simplified stimuli change visual search behavior How could
we test this? Peelen and Kastner, 2014
Methods deep neural networks for image classification AlexNet DNN architecture
"plane"
Methods ~ state-of-the-art models of object recognition in the visual
system adapted from DiCarlo and Cox 2007 AlexNet ANN architecture: ~ primate ventral visual stream "retina space" "inferior temporal cortex space" separating hyperplane
Methods deep neural networks optimized for image classification (Kell McDermott
2019) step
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks https://github.com/NickleDave/searchstims
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks the Visual Search Difficulty dataset "How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image". Ionescu, et al. 2016
Results DNNs exhibit set size effects
Results Set size effects result from optimizing DNNs to classify
natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Discussion Mismatch may be impeding our ability to understand visual
search behavior
Discussion Future work could compare behavior of different models on
a benchmark set of stimuli and tasks Guided Search 6.0, Wolfe 2021
NickleDave Thank you! Lifelong Learning Machines program, DARPA HR0011-18-2-0019 2017
William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone and L. Smith, Indiana University Bloomington. nicholdav