Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Could simplified stimuli change how the brain p...
Search
David Nicholson
November 23, 2021
Research
0
81
Could simplified stimuli change how the brain performs visual search tasks?
flash talk for Neuromatch 4.0
David Nicholson
November 23, 2021
Tweet
Share
More Decks by David Nicholson
See All by David Nicholson
VocalPy: a core Python package for acoustic communication research
nickledave
0
27
sorry-no-chatgpt-PyCon-2023-lightning-talk
nickledave
0
70
pyvanot
nickledave
0
63
vak: software for automated annotation of vocalizations with neural networks
nickledave
0
78
scipy-2019-visual-search-Tensorflow-talk
nickledave
0
83
scipy-2019-lightning-talk
nickledave
0
130
Automated Annotation of Animal Vocalizations
nickledave
0
72
Neural networks for segmentation of vocalizations
nickledave
0
360
Teaching Data Science to Scientists
nickledave
0
170
Other Decks in Research
See All in Research
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
640
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
260
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
360
ダイナミックプライシング とその実例
skmr2348
3
400
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
250
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
140
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
2.5k
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
0
120
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
250
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
4
400
snlp2024_multiheadMoE
takase
0
430
Featured
See All Featured
Designing for humans not robots
tammielis
250
25k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Become a Pro
speakerdeck
PRO
25
5k
Adopting Sorbet at Scale
ufuk
73
9.1k
Teambox: Starting and Learning
jrom
133
8.8k
Done Done
chrislema
181
16k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Agile that works and the tools we love
rasmusluckow
327
21k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
506
140k
[RailsConf 2023] Rails as a piece of cake
palkan
52
4.9k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Transcript
Could simplified stimuli change how the brain performs visual search
tasks? David Nicholson NMC4 December 2021
Introduction Visual search: a real-world behavior we engage in constantly
Introduction In the laboratory, visual search tasks use simplified stimuli
Peelen and Kastner, 2014
Introduction Hallmark of behavior exhibited in laboratory visual search tasks:
set size effects
Introduction The visual system is optimized to search natural images
Peelen and Kastner, 2014
Introduction → simplified stimuli change visual search behavior How could
we test this? Peelen and Kastner, 2014
Methods deep neural networks for image classification AlexNet DNN architecture
"plane"
Methods ~ state-of-the-art models of object recognition in the visual
system adapted from DiCarlo and Cox 2007 AlexNet ANN architecture: ~ primate ventral visual stream "retina space" "inferior temporal cortex space" separating hyperplane
Methods deep neural networks optimized for image classification (Kell McDermott
2019) step
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks https://github.com/NickleDave/searchstims
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks the Visual Search Difficulty dataset "How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image". Ionescu, et al. 2016
Results DNNs exhibit set size effects
Results Set size effects result from optimizing DNNs to classify
natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Discussion Mismatch may be impeding our ability to understand visual
search behavior
Discussion Future work could compare behavior of different models on
a benchmark set of stimuli and tasks Guided Search 6.0, Wolfe 2021
NickleDave Thank you! Lifelong Learning Machines program, DARPA HR0011-18-2-0019 2017
William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone and L. Smith, Indiana University Bloomington. nicholdav