Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Could simplified stimuli change how the brain p...
Search
David Nicholson
November 23, 2021
Research
0
83
Could simplified stimuli change how the brain performs visual search tasks?
flash talk for Neuromatch 4.0
David Nicholson
November 23, 2021
Tweet
Share
More Decks by David Nicholson
See All by David Nicholson
VocalPy: a core Python package for acoustic communication research
nickledave
0
29
sorry-no-chatgpt-PyCon-2023-lightning-talk
nickledave
0
70
pyvanot
nickledave
0
66
vak: software for automated annotation of vocalizations with neural networks
nickledave
0
79
scipy-2019-visual-search-Tensorflow-talk
nickledave
0
84
scipy-2019-lightning-talk
nickledave
0
130
Automated Annotation of Animal Vocalizations
nickledave
0
73
Neural networks for segmentation of vocalizations
nickledave
0
370
Teaching Data Science to Scientists
nickledave
0
170
Other Decks in Research
See All in Research
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
140
研究を支える拡張性の高い ワークフローツールの提案 / Proposal of highly expandable workflow tools to support research
linyows
0
250
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
930
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3.3k
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
220
機械学習でヒトの行動を変える
hiromu1996
1
450
Weekly AI Agents News!
masatoto
30
45k
国際会議ACL2024参加報告
chemical_tree
1
390
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
240
ダイナミックプライシング とその実例
skmr2348
3
530
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
240
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
180
Featured
See All Featured
Building Adaptive Systems
keathley
38
2.4k
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
Building an army of robots
kneath
302
45k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Designing for humans not robots
tammielis
250
25k
How GitHub (no longer) Works
holman
312
140k
A Philosophy of Restraint
colly
203
16k
Into the Great Unknown - MozCon
thekraken
34
1.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
Transcript
Could simplified stimuli change how the brain performs visual search
tasks? David Nicholson NMC4 December 2021
Introduction Visual search: a real-world behavior we engage in constantly
Introduction In the laboratory, visual search tasks use simplified stimuli
Peelen and Kastner, 2014
Introduction Hallmark of behavior exhibited in laboratory visual search tasks:
set size effects
Introduction The visual system is optimized to search natural images
Peelen and Kastner, 2014
Introduction → simplified stimuli change visual search behavior How could
we test this? Peelen and Kastner, 2014
Methods deep neural networks for image classification AlexNet DNN architecture
"plane"
Methods ~ state-of-the-art models of object recognition in the visual
system adapted from DiCarlo and Cox 2007 AlexNet ANN architecture: ~ primate ventral visual stream "retina space" "inferior temporal cortex space" separating hyperplane
Methods deep neural networks optimized for image classification (Kell McDermott
2019) step
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks https://github.com/NickleDave/searchstims
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks the Visual Search Difficulty dataset "How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image". Ionescu, et al. 2016
Results DNNs exhibit set size effects
Results Set size effects result from optimizing DNNs to classify
natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Discussion Mismatch may be impeding our ability to understand visual
search behavior
Discussion Future work could compare behavior of different models on
a benchmark set of stimuli and tasks Guided Search 6.0, Wolfe 2021
NickleDave Thank you! Lifelong Learning Machines program, DARPA HR0011-18-2-0019 2017
William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone and L. Smith, Indiana University Bloomington. nicholdav