Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Could simplified stimuli change how the brain p...
Search
David Nicholson
November 23, 2021
Research
0
85
Could simplified stimuli change how the brain performs visual search tasks?
flash talk for Neuromatch 4.0
David Nicholson
November 23, 2021
Tweet
Share
More Decks by David Nicholson
See All by David Nicholson
VocalPy: a core Python package for acoustic communication research
nickledave
0
36
sorry-no-chatgpt-PyCon-2023-lightning-talk
nickledave
0
72
pyvanot
nickledave
0
71
vak: software for automated annotation of vocalizations with neural networks
nickledave
0
85
scipy-2019-visual-search-Tensorflow-talk
nickledave
0
96
scipy-2019-lightning-talk
nickledave
0
140
Automated Annotation of Animal Vocalizations
nickledave
0
76
Neural networks for segmentation of vocalizations
nickledave
0
400
Teaching Data Science to Scientists
nickledave
0
190
Other Decks in Research
See All in Research
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
単施設でできる臨床研究の考え方
shuntaros
0
2.7k
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
410
snlp2025_prevent_llm_spikes
takase
0
170
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
16
9.9k
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
770
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
190
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
160
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
960
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
150
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
190
Featured
See All Featured
Visualization
eitanlees
148
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
It's Worth the Effort
3n
187
28k
Code Review Best Practice
trishagee
71
19k
Statistics for Hackers
jakevdp
799
220k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Balancing Empowerment & Direction
lara
3
620
Thoughts on Productivity
jonyablonski
70
4.8k
Speed Design
sergeychernyshev
32
1.1k
Optimizing for Happiness
mojombo
379
70k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Transcript
Could simplified stimuli change how the brain performs visual search
tasks? David Nicholson NMC4 December 2021
Introduction Visual search: a real-world behavior we engage in constantly
Introduction In the laboratory, visual search tasks use simplified stimuli
Peelen and Kastner, 2014
Introduction Hallmark of behavior exhibited in laboratory visual search tasks:
set size effects
Introduction The visual system is optimized to search natural images
Peelen and Kastner, 2014
Introduction → simplified stimuli change visual search behavior How could
we test this? Peelen and Kastner, 2014
Methods deep neural networks for image classification AlexNet DNN architecture
"plane"
Methods ~ state-of-the-art models of object recognition in the visual
system adapted from DiCarlo and Cox 2007 AlexNet ANN architecture: ~ primate ventral visual stream "retina space" "inferior temporal cortex space" separating hyperplane
Methods deep neural networks optimized for image classification (Kell McDermott
2019) step
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks https://github.com/NickleDave/searchstims
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks the Visual Search Difficulty dataset "How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image". Ionescu, et al. 2016
Results DNNs exhibit set size effects
Results Set size effects result from optimizing DNNs to classify
natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Discussion Mismatch may be impeding our ability to understand visual
search behavior
Discussion Future work could compare behavior of different models on
a benchmark set of stimuli and tasks Guided Search 6.0, Wolfe 2021
NickleDave Thank you! Lifelong Learning Machines program, DARPA HR0011-18-2-0019 2017
William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone and L. Smith, Indiana University Bloomington. nicholdav