Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Could simplified stimuli change how the brain p...
Search
David Nicholson
November 23, 2021
Research
0
83
Could simplified stimuli change how the brain performs visual search tasks?
flash talk for Neuromatch 4.0
David Nicholson
November 23, 2021
Tweet
Share
More Decks by David Nicholson
See All by David Nicholson
VocalPy: a core Python package for acoustic communication research
nickledave
0
27
sorry-no-chatgpt-PyCon-2023-lightning-talk
nickledave
0
70
pyvanot
nickledave
0
63
vak: software for automated annotation of vocalizations with neural networks
nickledave
0
79
scipy-2019-visual-search-Tensorflow-talk
nickledave
0
83
scipy-2019-lightning-talk
nickledave
0
130
Automated Annotation of Animal Vocalizations
nickledave
0
72
Neural networks for segmentation of vocalizations
nickledave
0
360
Teaching Data Science to Scientists
nickledave
0
170
Other Decks in Research
See All in Research
EBPMにおける生成AI活用について
daimoriwaki
0
220
KDD論文読み会2024: False Positive in A/B Tests
ryotoitoi
0
240
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
21
4.8k
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
620
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
150
Weekly AI Agents News!
masatoto
26
35k
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
800
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
170
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.1k
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
320
Introducing Research Units of Matsuo-Iwasawa Laboratory
matsuolab
0
1.3k
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
530
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
335
57k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Become a Pro
speakerdeck
PRO
26
5k
Statistics for Hackers
jakevdp
796
220k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
A Philosophy of Restraint
colly
203
16k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Optimising Largest Contentful Paint
csswizardry
33
3k
Automating Front-end Workflow
addyosmani
1366
200k
Transcript
Could simplified stimuli change how the brain performs visual search
tasks? David Nicholson NMC4 December 2021
Introduction Visual search: a real-world behavior we engage in constantly
Introduction In the laboratory, visual search tasks use simplified stimuli
Peelen and Kastner, 2014
Introduction Hallmark of behavior exhibited in laboratory visual search tasks:
set size effects
Introduction The visual system is optimized to search natural images
Peelen and Kastner, 2014
Introduction → simplified stimuli change visual search behavior How could
we test this? Peelen and Kastner, 2014
Methods deep neural networks for image classification AlexNet DNN architecture
"plane"
Methods ~ state-of-the-art models of object recognition in the visual
system adapted from DiCarlo and Cox 2007 AlexNet ANN architecture: ~ primate ventral visual stream "retina space" "inferior temporal cortex space" separating hyperplane
Methods deep neural networks optimized for image classification (Kell McDermott
2019) step
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks https://github.com/NickleDave/searchstims
Methods Transfer learning to adapt pre-trained DNNs to visual search
tasks the Visual Search Difficulty dataset "How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image". Ionescu, et al. 2016
Results DNNs exhibit set size effects
Results Set size effects result from optimizing DNNs to classify
natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images Training method Source dataset DNN architecture Accuracy (largest object) (mean (S. D.)) transfer ImageNet VGG16 0.786 (0.007) transfer ImageNet AlexNet 0.652 (0.010) initialize Pascal VOC AlexNet 0.390 (0.010) initialize Pascal VOC VGG16 0.353 (0.060) transfer search stimuli VGG16 0.262 (0.004) transfer search stimuli AlexNet 0.208 (0.000)
Results Optimizing DNNs with natural images --> improved, human-like behavior
on search tasks with natural images
Discussion Mismatch may be impeding our ability to understand visual
search behavior
Discussion Future work could compare behavior of different models on
a benchmark set of stimuli and tasks Guided Search 6.0, Wolfe 2021
NickleDave Thank you! Lifelong Learning Machines program, DARPA HR0011-18-2-0019 2017
William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone and L. Smith, Indiana University Bloomington. nicholdav