Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rayon (Rust Belt Rust)
Search
nikomatsakis
October 28, 2016
Programming
7
1k
Rayon (Rust Belt Rust)
A talk about Rayon from the Rust Belt Rust conference
nikomatsakis
October 28, 2016
Tweet
Share
More Decks by nikomatsakis
See All by nikomatsakis
Hereditary Harrop Formulas (Papers We Love Boston)
nikomatsakis
2
450
Rust: Systems Programming for All!
nikomatsakis
0
160
CppNow 2017
nikomatsakis
0
190
Rust at Mozilla (part of Mozilla Onboarding)
nikomatsakis
0
150
Guaranteeing Memory Safety and Data-Race Freedom in Rust
nikomatsakis
0
210
Other Decks in Programming
See All in Programming
クリエイティブコーディングとRuby学習 / Creative Coding and Learning Ruby
chobishiba
0
3.9k
採用事例の少ないSvelteを選んだ理由と それを正解にするためにやっていること
oekazuma
2
1k
Beyond ORM
77web
3
460
テストコードのガイドライン 〜作成から運用まで〜
riku929hr
1
170
今年一番支援させていただいたのは認証系サービスでした
satoshi256kbyte
1
250
talk-with-local-llm-with-web-streams-api
kbaba1001
0
180
Semantic Kernelのネイティブプラグインで知識拡張をしてみる
tomokusaba
0
180
バグを見つけた?それAppleに直してもらおう!
uetyo
0
180
Zoneless Testing
rainerhahnekamp
0
120
CSC305 Lecture 25
javiergs
PRO
0
130
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
120
HTTP compression in PHP and Symfony apps
dunglas
2
1.7k
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
GraphQLとの向き合い方2022年版
quramy
44
13k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Building Adaptive Systems
keathley
38
2.3k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Six Lessons from altMBA
skipperchong
27
3.5k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Transcript
Rayon Data Parallelism for Fun and Profit Nicholas Matsakis (nmatsakis
on IRC)
Want to make parallelization easy 2 fn load_images(paths: &[PathBuf]) ->
Vec<Image> { paths.iter() .map(|path| Image::load(path)) .collect() } fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.par_iter() .map(|path| Image::load(path)) .collect() } For each path… …load an image… …create and return a vector.
Want to make parallelization safe 3 fn load_images(paths: &[PathBuf]) ->
Vec<Image> { let mut pngs = 0; paths.par_iter() .map(|path| { if path.ends_with(“png”) { pngs += 1; } Image::load(path) }) .collect() } Data-race Will not compile
4 http://blog.faraday.io/saved-by-the-compiler-parallelizing-a-loop-with-rust-and-rayon/
5 Parallel Iterators join() threadpool Basically all safe Safe interface
Unsafe impl Unsafe
6 fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.iter() .map(|path| Image::load(path))
.collect() }
7 fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.par_iter() .map(|path| Image::load(path))
.collect() }
Not quite that simple… 8 (but almost!) 1. No mutating
shared state (except for atomics, locks). 2. Some combinators are inherently sequential. 3. Some things aren’t implemented yet.
9 fn load_images(paths: &[PathBuf]) -> Vec<Image> { let mut pngs
= 0; paths.par_iter() .map(|path| { if path.ends_with(“png”) { pngs += 1; } Image::load(path) }) .collect() } Data-race Will not compile
10 `c` not shared between iterations! fn increment_all(counts: &mut [u32])
{ for c in counts.iter_mut() { *c += 1; } } fn increment_all(counts: &mut [u32]) { paths.par_iter_mut() .for_each(|c| *c += 1); }
fn load_images(paths: &[PathBuf]) -> Vec<Image> { let pngs = paths.par_iter()
.filter(|p| p.ends_with(“png”)) .map(|_| 1) .sum(); paths.par_iter() .map(|p| Image::load(p)) .collect() } 11
12 But beware: atomics introduce nondeterminism! use std::sync::atomic::{AtomicUsize, Ordering}; fn
load_images(paths: &[PathBuf]) -> Vec<Image> { let pngs = AtomicUsize::new(0); paths.par_iter() .map(|path| { if path.ends_with(“png”) { pngs.fetch_add(1, Ordering::SeqCst); } Image::load(path) }) .collect() }
13 3 2 1 12 0 4 5 1 2
1 3 2 1 0 1 3 4 0 3 6 7 8 vec1 vec2 6 2 6 * sum 8 82 fn dot_product(vec1: &[i32], vec2: &[i32]) -> i32 { vec1.iter() .zip(vec2) .map(|(e1, e2)| e1 * e2) .fold(0, |a, b| a + b) // aka .sum() }
14 fn dot_product(vec1: &[i32], vec2: &[i32]) -> i32 { vec1.par_iter()
.zip(vec2) .map(|(e1, e2)| e1 * e2) .reduce(|| 0, |a, b| a + b) // aka .sum() } 3 2 1 12 0 4 5 1 2 1 3 2 1 0 1 3 4 0 3 6 7 8 vec1 vec2 sum 20 19 43 39 82
15 Parallel iterators: Mostly like normal iterators, but: • closures
cannot mutate shared state • some operations are different For the most part, Rust protects you from surprises.
16 Parallel Iterators join() threadpool
The primitive: join() 17 rayon::join(|| do_something(…), || do_something_else(…)); Meaning: maybe
execute two closures in parallel. Idea: - add `join` wherever parallelism is possible - let the library decide when it is profitable
18 fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.par_iter() .map(|path| Image::load(path))
.collect() } Image::load(paths[0]) Image::load(paths[1])
Work stealing 19 Cilk: http://supertech.lcs.mit.edu/cilk/ (0..22) Thread A Thread B
(0..15) (15..22) (1..15) (queue) (queue) (0..1) (15..22) (15..18) (18..22) (15..16) (16..18) “stolen” (18..22) “stolen”
20
21 Parallel Iterators join() threadpool Rayon: • Parallelize for fun
and profit • Variety of APIs available • Future directions: • more iterators • integrate SIMD, array ops • integrate persistent trees • factor out threadpool
22 Parallel Iterators join() scope() threadpool
23 the scope `s` task `t1` task `t2` rayon::scope(|s| {
… s.spawn(move |s| { // task t1 }); s.spawn(move |s| { // task t2 }); … });
rayon::scope(|s| { … s.spawn(move |s| { // task t1 s.spawn(move
|s| { // task t2 … }); … }); … }); 24 the scope task t1 task t2
`not_ok` is freed here 25 the scope task t1 let
ok: &[u32]s = &[…]; rayon::scope(|scope| { … let not_ok: &[u32] = &[…]; … scope.spawn(move |scope| { // which variables can t1 use? }); });
26 fn join<A,B>(a: A, b: B) where A: FnOnce() +
Send, B: FnOnce() + Send, { rayon::scope(|scope| { scope.spawn(move |_| a()); scope.spawn(move |_| b()); }); } (Real join avoids heap allocation)
27 struct Tree<T> { value: T, children: Vec<Tree<T>>, } impl<T>
Tree<T> { fn process_all(&mut self) { process_value(&mut self.value); for child in &mut self.children { child.process_all(); } } }
28 impl<T> Tree<T> { fn process_all(&mut self) where T: Send
{ rayon::scope(|scope| { for child in &mut self.children { scope.spawn(move |_| child.process_all()); } process_value(&mut self.value); }); } }
29 impl<T> Tree<T> { fn process_all(&mut self) where T: Send
{ rayon::scope(|scope| { let children = &mut self.children; scope.spawn(move |scope| { for child in &mut children { scope.spawn(move |_| child.process_all()); } }); process_value(&mut self.value); }); } }
30 impl<T: Send> Tree<T> { fn process_all(&mut self) { rayon::scope(|s|
self.process_in(s)); } fn process_in<‘s>(&’s mut self, scope: &Scope<‘s>) { let children = &mut self.children; scope.spawn(move |scope| { for child in &mut children { scope.spawn(move |scope| child.process_in(scope)); } }); process_value(&mut self.value); } }