Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新卒が考えた理想のDS新卒研修
Search
ninohira
November 09, 2018
1
820
新卒が考えた理想のDS新卒研修
ninohira
November 09, 2018
Tweet
Share
More Decks by ninohira
See All by ninohira
[ICML2021 論文読み会]Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
ninohira
0
1.4k
[論文紹介]Jukebox: A Generative Model for Music
ninohira
0
730
無駄分析を避ける為にデータサイエンティストに求められる能力
ninohira
3
13k
アーティストにとっての「愛」とは?~What is ”Love" for artist?~
ninohira
1
10k
Data Gateway Talk Vol.5運営資料
ninohira
1
520
今再びのRによる因果推論_Causal Interference by R_#japanr
ninohira
2
10k
因果推論の基礎とその罠 _Basic and Trap of Causal Inference_#白金鉱業
ninohira
5
13k
ドキュメンテーションのすヽめ_#MLbeginners
ninohira
1
750
Data Gateway Talk Vol.1運営資料
ninohira
1
3.1k
Featured
See All Featured
A better future with KSS
kneath
240
18k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Marketing to machines
jonoalderson
1
4.5k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Git: the NoSQL Database
bkeepers
PRO
432
66k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
76
From π to Pie charts
rasagy
0
100
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Fireside Chat
paigeccino
41
3.8k
Bash Introduction
62gerente
615
210k
Transcript
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम ਔϊฏকਓ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 2 ࢿྉެ։ ࢿྉʑconnpassʹެ։͠·͢ TwitterͰͷҙݟOKͰ͢ ໔ࣄ߲ ຊൃදݸਓͷݟղͰ͋Γɺ ॴଐ͢Δ৫ͷݟղͰ͋Γ·ͤΜ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ࣗݾհ 3 ਔϊฏɹকਓ Masato Ninohira ֶੜ ࣾձਓ झຯ
ڞಉݚڀઌͷσʔλ × ػցֶशΛ༻͍ͨఏҊ = ࣮࣭डୗੳ(※ύοέʔδ͚ͩͰͳ͘ɺʹ߹Θͤͨख๏ͷ։ൃ͕ϝΠϯ) ڧԽֶशҊ݅ Kaggle׆ಈਪਐ෦ͷ্ཱͪ͛ 2018৽ଔσʔλαΠΤϯςΟετ άϧϝαΠτɾ൪ΛݟΔ B’zϑΝϯ τϐοΫϞσϧw2vΛ༻͍ͨՎࢺͷੳ https://pira-nino.hatenablog.com/
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ͏ͪͷձࣾ ৽ଔੳ OR த్ະܦݧ ࠾ͬͯΔΑʔͬͯํ ͓ฉ͖͠·ʔ͢ 4 ԿΛݚमͰΕ͍͍͔໎ͬͯΔΑʔͬͯํ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ͓ฉ͖͠·ʔ͢ 5 ͏ͪͷձࣾ ৽ଔσʔλαΠΤϯςΟετ࠾ͬͯΔΑʔͬͯํ ԿΛݚमͰΕ͍͍͔໎ͬͯΔΑʔͬͯํ σʔλαΠΤϯςΟετͷҭͰ ʮ͜Μͳ͜ͱͨ͠Β͍͍ͷͰʯ Λड͚ΔଆͷࢹͰ͠·͢ɻ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظؒ × ϕʔεɾΦϓγϣϯ 6 ظ ɾ ظ ϕʔε
ɾ Φϓγϣϯ ※ϏδωεΑΓαΠΤϯεدΓͷ͠·͢ ͙͢ʹಋೖͰ͖ΔʮΦϓγϣϯʯΛϝΠϯʹ͠·͢
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظʢೖࣾʙ3ϲ݄ʣʢ͍ΘΏΔ৽ଔݚमʣ 7 ϕʔε ձࣾͷํʹ߹ΘͤΔ ɾ༷ʑͳۀछͰ߹ಉ ɾ࠷ڧͷΤϯδχΞʹ͢Δ ฐࣾͷྫ ɾӦۀಉߦ
ݱ࣮ͷϏδωεݫ͍͜͠ͱΛΔ ɾKaglle (2DAY) EDA -> ༧ଌ ͷྲྀΕΛΕΔʴӳޠʹ׳ΕΔ ɾ1DAY ࣾձՊݟֶ ̍ͷྲྀΕʴࡉ͔͍࡞ۀ༰ΛΕΔ ɾࣾυΩϡϝϯτΛݟΔ PJTͷਐߦաఔͳͲձࣾΛΕΔ Φϓγϣϯ ϝΠϯ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظʢೖࣾ3ϲ݄ʙʣ 8 ϕʔε ࣮Ҋ݅Λܦݧ ɾ՝ਤॻ Ҋ͚݅ͩͰ౷ܭɾػցֶशͷࣝΛ͚ͭΔͷࠔ ɾΞτϓοτ࡞ͷྭ ɹ
ࣾWIKIɾษڧձɿू߹ ɹQIITAɾϒϩάɿݸਓɾձࣾͷϒϥϯσΟϯά Φϓγϣϯ ɾ࣮Ҋ݅ΛΔͷ͕Ұ൪ ɾಛʹϏδωεྗ͜͜Ͱͭ͘ ϝΠϯ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 গ͠Ͱ͝ࢀߟʹͳΕ͍Ͱ͢ɻ 9