Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Nishika] Narou_z Animal_2nd Solution
Search
Nishika-Inc
January 24, 2022
Technology
0
220
[Nishika] Narou_z Animal_2nd Solution
Nishika 小説家になろうコンペ
z Animal
2位ソリューション
Nishika-Inc
January 24, 2022
Tweet
Share
More Decks by Nishika-Inc
See All by Nishika-Inc
Nishika_テックチーム_ご紹介資料 / Nishika_TechTeam_Introduction
nishikainc
0
470
Nishika_Bussei_大好きオフトゥン_1st_solution.pdf
nishikainc
0
160
Nishika_Bussei_mi-solution_3rd_solution.pdf
nishikainc
0
330
Nishika_Sleep_TYS_1st_Solution.pdf
nishikainc
0
180
Nishika_Sleep_Condor_3rd_Solution.pdf
nishikainc
0
160
[Nishika] Patent_tmsbir_1st Solution
nishikainc
0
440
[Nishika] Patent_TDX_3rd Solution
nishikainc
0
350
[Nishika] Narou_Hi F_1st Solution
nishikainc
0
270
202010_Nishika_サービス紹介 / Nishika_Service_Introduction
nishikainc
0
210
Other Decks in Technology
See All in Technology
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
380
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
320
事業貢献を考えるための技術改善の目標設計と改善実績 / Targeted design of technical improvements to consider business contribution and improvement performance
oomatomo
0
150
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
180
APIとはなにか
mikanichinose
0
110
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
160
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.2k
LINE Developersプロダクト(LIFF/LINE Login)におけるフロントエンド開発
lycorptech_jp
PRO
0
150
非機能品質を作り込むための実践アーキテクチャ
knih
5
1.6k
コンテナセキュリティのためのLandlock入門
nullpo_head
2
330
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
190
Server-Side Engineer of LINE Sukimani
lycorp_recruit_jp
0
360
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
For a Future-Friendly Web
brad_frost
175
9.4k
What's in a price? How to price your products and services
michaelherold
244
12k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Navigating Team Friction
lara
183
15k
Agile that works and the tools we love
rasmusluckow
328
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
The Invisible Side of Design
smashingmag
298
50k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
4 Signs Your Business is Dying
shpigford
182
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Transcript
小説家になろう ブクマ数予測 〜”伸びる”タイトルとは?〜 ソリューション 最終スコア2位: Animal z
改善プロセス CV 暫定スコア 最終スコア 実質スコア 変化幅 トップトークン特徴量など (モデル:LoghtGBM) 0.7822 0.6885
0.6856 0.6870 BERTモデル特徴量 (whole,v2) 0.7661 0.6772 0.6652 0.6712 -0.0158 スパンモデル特徴量(1,2年) 0.7625 0.6677 0.6549 0.6613 -0.0099 Optunaチューニング(LGBM) 0.7516 0.6648 0.6508 0.6578 -0.0035 CatBoost(メインモデル) 0.7059 0.6347 0.6301 0.6324 -0.0254 ミス修正・再現確認など (スパンモデルCBに変更) 0.7059 0.6375 0.6358 0.6366 +0.0042 スパンモデルLGBM(1,2年) 0.7039 0.6335 0.6310 0.6322 -0.0044 (logloss)
改善効果が大きかったもの • トップトークン特徴量(後述:CV-0.02超) • CatBoost(-0.0254)
トップトークン評価(CV) LightGBM 変化幅 CatBoost 変化幅 トップトークン特徴量なし 0.8068 0.743 トップトークン特徴量あり 0.7781
-0.0287 0.7214 -0.0216
トップトークン抽出方法 • ブックマーク度1以上のトップトークンを抽出 【手順】 ① ブックマーク度ごとに各行の title, story, keyword からユニークトークンを抽出
② ブックマーク度ごとにトップトークンを抽出 (title: top200, story: top500, keyword: top200) ③ ユニーク化(title, story, keyword ごとにまとめる)
ブックマーク度別トークン抽出データ • ブックマーク度が高いほど抽出率が上昇 title story keyword トークン数 抽出率 トークン数 抽出率
トークン数 抽出率 1 53,877 0.62% 441,495 0.15% 96,903 0.32% 2 25,446 1.32% 215,279 0.32% 41,270 0.74% 3 14,607 2.22% 112,229 0.62% 20,358 1.47% 4 6,397 4.83% 56,164 1.23% 9,287 2.99% 抽出数 339 695 310
重要度上位トークン(CatBoost) • keyword > story > title で重要度が高い傾向 Rank title
重要度 story 重要度 keyword 重要度 1 ので 0.086 婚約 0.303 冬童話2021 1.072 2 ない 0.057 令嬢 0.301 R15 0.536 3 たち 0.047 ...... 0.273 日常 0.452 4 VS 0.047 する 0.269 ざまぁ 0.371 5 たら 0.044 参加 0.224 異能力バトル 0.345 6 令嬢 0.042 それ 0.207 近未来 0.293 7 転生 0.041 ます 0.202 シリアス 0.272 8 追放 0.040 ある 0.198 IF戦記 0.235 9 幼馴染 0.037 この 0.190 私小説 0.220 10 物語 0.035 って 0.182 婚約 0.203
BERTモデル・スパンモデル追加 • BERTモデル単独では性能が低いものの、特徴量化でスコア改善 (性能が低い割にスコア上昇に貢献、CV:0.9-1.1程度) • スパンモデルも、メインモデルより性能はやや劣るものの、 特徴量化でスコア改善 (訓練データ不足を0パディングで対応、LB:0.642-0.648程度)
CatBoost • モデル変更のみで大幅にスコア改善 【特徴】 • カテゴリカル変数に強い • 過学習を減少させる 【個人的感想】 •
パラメータチューニングが困難
最後に • 特徴量を増やしてスコアを上げていくやり方は効率的 (性能の低いモデルも無駄にはならない) • コードの整理と再現のコストが大きいのが課題 • どうもありがとうございました