Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Nishika] Narou_z Animal_2nd Solution
Search
Nishika-Inc
January 24, 2022
Technology
0
240
[Nishika] Narou_z Animal_2nd Solution
Nishika 小説家になろうコンペ
z Animal
2位ソリューション
Nishika-Inc
January 24, 2022
Tweet
Share
More Decks by Nishika-Inc
See All by Nishika-Inc
Nishika_テックチーム_ご紹介資料 / Nishika_TechTeam_Introduction
nishikainc
0
850
Nishika_Bussei_大好きオフトゥン_1st_solution.pdf
nishikainc
0
190
Nishika_Bussei_mi-solution_3rd_solution.pdf
nishikainc
0
390
Nishika_Sleep_TYS_1st_Solution.pdf
nishikainc
0
230
Nishika_Sleep_Condor_3rd_Solution.pdf
nishikainc
0
190
[Nishika] Patent_tmsbir_1st Solution
nishikainc
0
480
[Nishika] Patent_TDX_3rd Solution
nishikainc
0
380
[Nishika] Narou_Hi F_1st Solution
nishikainc
0
290
202010_Nishika_サービス紹介 / Nishika_Service_Introduction
nishikainc
0
230
Other Decks in Technology
See All in Technology
LLM 機能を支える Langfuse / ClickHouse のサーバレス化
yuu26
9
2.8k
AIドリブンのソフトウェア開発 - うまいやり方とまずいやり方
okdt
PRO
9
390
MySQL HeatWave:サービス概要のご紹介
oracle4engineer
PRO
4
1.6k
Exadata Database Service on Dedicated Infrastructure セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
1
340
ECS モニタリング手法大整理
yendoooo
1
110
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
250
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
2
1.1k
Claude Code x Androidアプリ 開発
kgmyshin
1
460
夏休みWebアプリパフォーマンス相談室/web-app-performance-on-radio
hachi_eiji
1
280
どこで動かすか、誰が動かすか 〜 kintoneのインフラ基盤刷新と運用体制のシフト 〜
ueokande
0
130
人を動かすことについて考える
ichimichi
2
230
RAID6 を楔形文字で組んで現代人を怖がらせましょう(実装編)
mimifuwa
0
200
Featured
See All Featured
Visualization
eitanlees
146
16k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
Thoughts on Productivity
jonyablonski
69
4.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
890
The Pragmatic Product Professional
lauravandoore
36
6.8k
Embracing the Ebb and Flow
colly
86
4.8k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
The Invisible Side of Design
smashingmag
301
51k
Transcript
小説家になろう ブクマ数予測 〜”伸びる”タイトルとは?〜 ソリューション 最終スコア2位: Animal z
改善プロセス CV 暫定スコア 最終スコア 実質スコア 変化幅 トップトークン特徴量など (モデル:LoghtGBM) 0.7822 0.6885
0.6856 0.6870 BERTモデル特徴量 (whole,v2) 0.7661 0.6772 0.6652 0.6712 -0.0158 スパンモデル特徴量(1,2年) 0.7625 0.6677 0.6549 0.6613 -0.0099 Optunaチューニング(LGBM) 0.7516 0.6648 0.6508 0.6578 -0.0035 CatBoost(メインモデル) 0.7059 0.6347 0.6301 0.6324 -0.0254 ミス修正・再現確認など (スパンモデルCBに変更) 0.7059 0.6375 0.6358 0.6366 +0.0042 スパンモデルLGBM(1,2年) 0.7039 0.6335 0.6310 0.6322 -0.0044 (logloss)
改善効果が大きかったもの • トップトークン特徴量(後述:CV-0.02超) • CatBoost(-0.0254)
トップトークン評価(CV) LightGBM 変化幅 CatBoost 変化幅 トップトークン特徴量なし 0.8068 0.743 トップトークン特徴量あり 0.7781
-0.0287 0.7214 -0.0216
トップトークン抽出方法 • ブックマーク度1以上のトップトークンを抽出 【手順】 ① ブックマーク度ごとに各行の title, story, keyword からユニークトークンを抽出
② ブックマーク度ごとにトップトークンを抽出 (title: top200, story: top500, keyword: top200) ③ ユニーク化(title, story, keyword ごとにまとめる)
ブックマーク度別トークン抽出データ • ブックマーク度が高いほど抽出率が上昇 title story keyword トークン数 抽出率 トークン数 抽出率
トークン数 抽出率 1 53,877 0.62% 441,495 0.15% 96,903 0.32% 2 25,446 1.32% 215,279 0.32% 41,270 0.74% 3 14,607 2.22% 112,229 0.62% 20,358 1.47% 4 6,397 4.83% 56,164 1.23% 9,287 2.99% 抽出数 339 695 310
重要度上位トークン(CatBoost) • keyword > story > title で重要度が高い傾向 Rank title
重要度 story 重要度 keyword 重要度 1 ので 0.086 婚約 0.303 冬童話2021 1.072 2 ない 0.057 令嬢 0.301 R15 0.536 3 たち 0.047 ...... 0.273 日常 0.452 4 VS 0.047 する 0.269 ざまぁ 0.371 5 たら 0.044 参加 0.224 異能力バトル 0.345 6 令嬢 0.042 それ 0.207 近未来 0.293 7 転生 0.041 ます 0.202 シリアス 0.272 8 追放 0.040 ある 0.198 IF戦記 0.235 9 幼馴染 0.037 この 0.190 私小説 0.220 10 物語 0.035 って 0.182 婚約 0.203
BERTモデル・スパンモデル追加 • BERTモデル単独では性能が低いものの、特徴量化でスコア改善 (性能が低い割にスコア上昇に貢献、CV:0.9-1.1程度) • スパンモデルも、メインモデルより性能はやや劣るものの、 特徴量化でスコア改善 (訓練データ不足を0パディングで対応、LB:0.642-0.648程度)
CatBoost • モデル変更のみで大幅にスコア改善 【特徴】 • カテゴリカル変数に強い • 過学習を減少させる 【個人的感想】 •
パラメータチューニングが困難
最後に • 特徴量を増やしてスコアを上げていくやり方は効率的 (性能の低いモデルも無駄にはならない) • コードの整理と再現のコストが大きいのが課題 • どうもありがとうございました