Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介: IRのためのパラメータチューニング / ir-tuning
Search
Masahiro Nomura
October 31, 2020
Research
0
500
論文紹介: IRのためのパラメータチューニング / ir-tuning
Masahiro Nomura
October 31, 2020
Tweet
Share
More Decks by Masahiro Nomura
See All by Masahiro Nomura
ランダム欠損データに依存しない推薦システムのバイアス除去 / towards-resolving-propensity-contradiction-in-offline-recommender-learning
nmasahiro
0
290
転移学習によるハイパーパラメータ最適化の高速化 / warm_starting_cma
nmasahiro
0
2.2k
論文紹介: Sample Reuse via Importance Sampling in Information Geometric Optimization / sample_reuse_igo
nmasahiro
0
270
機械学習における ハイパーパラメータ最適化の理論と実践 / hpo_theory_practice
nmasahiro
30
41k
論文紹介 : Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
nmasahiro
1
730
広告とAI(とハイパーパラメータ最適化) / Ad with AI
nmasahiro
1
2.1k
Other Decks in Research
See All in Research
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
IMC の細かすぎる話 2025
smly
2
770
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
110
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
250
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
780
Open Gateway 5GC利用への期待と不安
stellarcraft
2
160
20250725-bet-ai-day
cipepser
3
540
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
610
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
530
When Learned Data Structures Meet Computer Vision
matsui_528
1
1k
Featured
See All Featured
Designing for Performance
lara
610
69k
Why Our Code Smells
bkeepers
PRO
340
57k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Automating Front-end Workflow
addyosmani
1371
200k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Bash Introduction
62gerente
615
210k
Docker and Python
trallard
46
3.7k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
論文紹介 - IRのためのパラメータチューニング - IR Reading (2020/10/31) 株式会社サイバーエージェント 野村 将寛
Bayesian Optimization for Optimizing Retrieval Systems
どんな論文? • 著者 : Dan Li, Evangelos Kanoulas (Univ. of
Amsterdam) • 出典 : WSDM’18 • 要約 : ◦ 情報検索システムには多数のハイパーパラメータが存在 ◦ チューニングにベイズ最適化を利用し実験で性能を確認
IRにおけるハイパーパラメータの重要性 • IRにはチューニングすべきハイパーパラメータが多数存在 ◦ stopwords lists ◦ stemming methods ◦
retrieval model ◦ k1 and b values in BM25 ◦ number of top-ranked documents to consider ◦ number of query expansion terms • ハイパーパラメータの値によって検索の性能が大きく変わる
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
Black-Box関数 f(x) x • 中身がBlack-Boxな関数と見なすことができる • チューニングはBlack-Box最適化によって行うことができる
チューニングのためのBlack-Box最適化手法 • Grid Search • Random Search • ベイズ最適化 ◦
SOTAなハイパーパラメータのチューニング手法 ◦ OptunaなどのOSSから利用可能
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
実験 • データセット : TREC • Pyndri (IndriのPython Interface) を使用
• ハイパーパラメータ : 2変数 & 18変数 ◦ 2変数 : two stage smoothingのλとμ ◦ 18変数 : stopper, stemmer, retrieval modelなど • 評価指標 ◦ MAP (Mean Average Precision) ◦ NDCG (Normalized Discounted Cumulative Gain) ◦ MRR (Mean reciprocal rank)
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した 異なる滑らかさの仮定
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
Parameter Tuning in Personal Search Systems
どんな論文? • 著者 : Suming J. Chen et al. (Google)
• 出典 : WSDM’20 • 要約 : ◦ 個人データの検索だとクエリとドキュメントのログが非公開 ▪ オフラインでのチューニングができない ◦ 一方でオンラインA/Bテストはユーザ体験を損なう可能性 ◦ 部分的なログしかないデータを使ったチューニングを提案
White Box System • 関数についての情報が全て得られているシステム (強い仮定) • オフライン実験にてパラメータをチューニングすることが可能
Black Box System • 関数の中身の情報が全く得られないシステム • queryとdocが分からないため,オフライン実験は不可能 ◦ 高コストなA/Bテストを行う必要がある
Grey Box System (Main Focus) • White BoxとBlack Boxの中間 ◦
関数の中身の情報が部分的に得られているシステム
最適化の手順 1. サブスコア(緑枠)を推論する 2. 最終スコアと相関の高いサブスコアを特定 する 3. そのサブスコアのパラメータを最適化
実験 • GMail (約100万クエリ) とGoogle Drive (約25万クエリ) で実験 • サービスの特性的に、実際のDAGの構造は明かせない
• 評価手順 ◦ Grey Box : オフラインにおいてパラメータを選択後オンラインで評価 ◦ Black Box : オフライン評価ができないためオンラインで数試行評価 • 評価指標 ◦ ACP (Average Click Position) ◦ CTR (Click-Through Rate) ◦ MRR (Mean Reciprocal Rank)
結果 • 特にDriveで有意に改善 • Grey Box • Black Box •
性能は悪化 • (実質ランダムサーチなので妥当)
ハイパーパラメータ最適化の参考資料 • 機械学習におけるハイパーパラメータ最適化の理論と実践 ◦ https://speakerdeck.com/nmasahiro/hpo-theory-practice ◦ PyConJP 2019 発表スライド ◦
チューニングの基本 + ガイドライン (手法の選択、おすすめOSSなど) • 機械学習におけるハイパパラメータ最適化手法:概要と特徴 ◦ https://search.ieice.org/bin/summary.php?id=j103-d_9_615 ◦ 電子情報通信学会論文誌 (2020/09公開; オープンアクセス) ◦ より踏み込んだガイドラインを提示