Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介: IRのためのパラメータチューニング / ir-tuning
Search
Masahiro Nomura
October 31, 2020
Research
0
490
論文紹介: IRのためのパラメータチューニング / ir-tuning
Masahiro Nomura
October 31, 2020
Tweet
Share
More Decks by Masahiro Nomura
See All by Masahiro Nomura
ランダム欠損データに依存しない推薦システムのバイアス除去 / towards-resolving-propensity-contradiction-in-offline-recommender-learning
nmasahiro
0
270
転移学習によるハイパーパラメータ最適化の高速化 / warm_starting_cma
nmasahiro
0
2.2k
論文紹介: Sample Reuse via Importance Sampling in Information Geometric Optimization / sample_reuse_igo
nmasahiro
0
260
機械学習における ハイパーパラメータ最適化の理論と実践 / hpo_theory_practice
nmasahiro
30
40k
論文紹介 : Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
nmasahiro
1
710
広告とAI(とハイパーパラメータ最適化) / Ad with AI
nmasahiro
1
2k
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
160
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
290
Combinatorial Search with Generators
kei18
0
890
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
140
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
440
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
150
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
640
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
310
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
630
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
870
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
210
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
How GitHub (no longer) Works
holman
315
140k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Building Adaptive Systems
keathley
43
2.8k
The Cost Of JavaScript in 2023
addyosmani
53
9k
Producing Creativity
orderedlist
PRO
347
40k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Context Engineering - Making Every Token Count
addyosmani
5
180
Making Projects Easy
brettharned
119
6.4k
Transcript
論文紹介 - IRのためのパラメータチューニング - IR Reading (2020/10/31) 株式会社サイバーエージェント 野村 将寛
Bayesian Optimization for Optimizing Retrieval Systems
どんな論文? • 著者 : Dan Li, Evangelos Kanoulas (Univ. of
Amsterdam) • 出典 : WSDM’18 • 要約 : ◦ 情報検索システムには多数のハイパーパラメータが存在 ◦ チューニングにベイズ最適化を利用し実験で性能を確認
IRにおけるハイパーパラメータの重要性 • IRにはチューニングすべきハイパーパラメータが多数存在 ◦ stopwords lists ◦ stemming methods ◦
retrieval model ◦ k1 and b values in BM25 ◦ number of top-ranked documents to consider ◦ number of query expansion terms • ハイパーパラメータの値によって検索の性能が大きく変わる
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
Black-Box関数 f(x) x • 中身がBlack-Boxな関数と見なすことができる • チューニングはBlack-Box最適化によって行うことができる
チューニングのためのBlack-Box最適化手法 • Grid Search • Random Search • ベイズ最適化 ◦
SOTAなハイパーパラメータのチューニング手法 ◦ OptunaなどのOSSから利用可能
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
実験 • データセット : TREC • Pyndri (IndriのPython Interface) を使用
• ハイパーパラメータ : 2変数 & 18変数 ◦ 2変数 : two stage smoothingのλとμ ◦ 18変数 : stopper, stemmer, retrieval modelなど • 評価指標 ◦ MAP (Mean Average Precision) ◦ NDCG (Normalized Discounted Cumulative Gain) ◦ MRR (Mean reciprocal rank)
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した 異なる滑らかさの仮定
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
Parameter Tuning in Personal Search Systems
どんな論文? • 著者 : Suming J. Chen et al. (Google)
• 出典 : WSDM’20 • 要約 : ◦ 個人データの検索だとクエリとドキュメントのログが非公開 ▪ オフラインでのチューニングができない ◦ 一方でオンラインA/Bテストはユーザ体験を損なう可能性 ◦ 部分的なログしかないデータを使ったチューニングを提案
White Box System • 関数についての情報が全て得られているシステム (強い仮定) • オフライン実験にてパラメータをチューニングすることが可能
Black Box System • 関数の中身の情報が全く得られないシステム • queryとdocが分からないため,オフライン実験は不可能 ◦ 高コストなA/Bテストを行う必要がある
Grey Box System (Main Focus) • White BoxとBlack Boxの中間 ◦
関数の中身の情報が部分的に得られているシステム
最適化の手順 1. サブスコア(緑枠)を推論する 2. 最終スコアと相関の高いサブスコアを特定 する 3. そのサブスコアのパラメータを最適化
実験 • GMail (約100万クエリ) とGoogle Drive (約25万クエリ) で実験 • サービスの特性的に、実際のDAGの構造は明かせない
• 評価手順 ◦ Grey Box : オフラインにおいてパラメータを選択後オンラインで評価 ◦ Black Box : オフライン評価ができないためオンラインで数試行評価 • 評価指標 ◦ ACP (Average Click Position) ◦ CTR (Click-Through Rate) ◦ MRR (Mean Reciprocal Rank)
結果 • 特にDriveで有意に改善 • Grey Box • Black Box •
性能は悪化 • (実質ランダムサーチなので妥当)
ハイパーパラメータ最適化の参考資料 • 機械学習におけるハイパーパラメータ最適化の理論と実践 ◦ https://speakerdeck.com/nmasahiro/hpo-theory-practice ◦ PyConJP 2019 発表スライド ◦
チューニングの基本 + ガイドライン (手法の選択、おすすめOSSなど) • 機械学習におけるハイパパラメータ最適化手法:概要と特徴 ◦ https://search.ieice.org/bin/summary.php?id=j103-d_9_615 ◦ 電子情報通信学会論文誌 (2020/09公開; オープンアクセス) ◦ より踏み込んだガイドラインを提示