Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ランダム欠損データに依存しない推薦システムのバイアス除去 / towards-resolvin...
Search
Masahiro Nomura
July 02, 2022
Research
0
290
ランダム欠損データに依存しない推薦システムのバイアス除去 / towards-resolving-propensity-contradiction-in-offline-recommender-learning
Masahiro Nomura
July 02, 2022
Tweet
Share
More Decks by Masahiro Nomura
See All by Masahiro Nomura
転移学習によるハイパーパラメータ最適化の高速化 / warm_starting_cma
nmasahiro
0
2.2k
論文紹介: IRのためのパラメータチューニング / ir-tuning
nmasahiro
0
510
論文紹介: Sample Reuse via Importance Sampling in Information Geometric Optimization / sample_reuse_igo
nmasahiro
0
280
機械学習における ハイパーパラメータ最適化の理論と実践 / hpo_theory_practice
nmasahiro
30
41k
論文紹介 : Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
nmasahiro
1
730
広告とAI(とハイパーパラメータ最適化) / Ad with AI
nmasahiro
1
2.1k
Other Decks in Research
See All in Research
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
450
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
330
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
湯村研究室の紹介2025 / yumulab2025
yumulab
0
250
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
18
8.7k
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
100
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
290
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
280
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
440
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
We Have a Design System, Now What?
morganepeng
54
7.9k
Six Lessons from altMBA
skipperchong
29
4.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Facilitating Awesome Meetings
lara
57
6.7k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
The Cult of Friendly URLs
andyhume
79
6.7k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Transcript
ランダム⽋損データに依存しない 推薦システムのバイアス除去 野村 将寛 (Masahiro Nomura) CyberAgent AI Lab 07/02(Sat)@CFML勉強会
https://cfml.connpass.com/event/249531/ 1
名前: • 野村 将寛 所属: • CyberAgent AI Lab: Creative
Research Team 研究: • ハイパーパラメータ最適化 • 進化計算 • ベイズ最適化 • 推薦システム • バンディット • ⾃然⾔語処理 2 ⾃⼰紹介
Towards Resolving Propensity Contradiction in Offline Recommender Learning Yuta Saito
(Cornell) and Masahiro Nomura (CyberAgent) IJCAI’22 (Long Talk) Acceptance rate=15%, Long Talk (top 4% of submissions) 3
推薦システムは⾄るところで使われている Netflix, Spotify, Amazonなどのオンラインプラットフォームでは アルゴリズム的な推薦によりアイテムを⾃動的に推薦している 4 Spotify Netflix
協調フィルタリング ユーザのそれぞれのアイテムに対する選好を観測された評価から学習する 5 Users Matrix Factorization - 1 3 4
5 - - - 3 Items
真の評価分布と観測される評価分布のズレ 6 選択バイアス • 過去の推薦⽅法 • ユーザの選択⾏動 真の評価分布 (Marlin et
al., UAIʼ07) Figure 2. Marlin, B., Zemel, R. S., Roweis, S., and Slaney, M. Collaborative filtering and the missing at random assumption. In UAI, 2007. 観測された評価分布
理想的な評価指標 ユーザ/アイテム対 が与えられたもとで, 7 局所損失 (⼆乗損失, 絶対値損失等) ⼀様なユーザ/アイテム分布のもとでの 経験平均
観測情報から理想的な損失をどう推定するか 8 観測から計算可能な損失 理想的な損失 ︖ 推定
ナイーブ推定量 9 観測データ上の局所損失の経験平均としてナイーブ推定量を定義 多くの推薦システムではこのナイーブ損失を最適化しようとしている 観測データ
ナイーブ推定量は”バイアス”されている 10 ナイーブ推定量の期待値は理想的な損失と⼀致しない バイアスが存在
逆傾向スコア (IPS) 推定量 11 IPS推定量は傾向スコアの逆数で重みづけることでバイアスを除去している 観測データ 傾向スコア
IPS推定量は”バイアス”されていない 12 IPS推定量は理想的な損失を期待値の点でうまく近似する バイアスなし IPSを使えばよい︖
傾向スコアの推定とその⽭盾 13 IPS推定量には傾向スコアの推定が必要 • しかし,真の傾向スコアは実⽤上⼿に⼊らない 既存研究では傾向スコアを⼗分に推定するため,真の分布からのランダムな (Missing-completely-at-random; MCAR) データを必要としている •
元々はMCARデータを使わずにうまく推定するのが⽬的だった • モチベーションと⽭盾することが起こっている
傾向スコアの推定とその⽭盾 14 IPS推定量には傾向スコアの推定が必要 • しかし,真の傾向スコアは実⽤上⼿に⼊らない 既存研究では傾向スコアを⼗分に推定するため,真の分布からのランダムな (Missing-completely-at-random; MCAR) データを必要としている •
元々はMCARデータを使わずにうまく推定するのが⽬的だった • モチベーションと⽭盾することが起こっている 傾向スコアに依存しない形で正確な評価予測器を学習することは可能だろうか︖
Propensity Matrix Divergenceの導⼊ 15 傾向スコアの代わりに,Propensity Matrix Divergenceを定義する MNARとMCAR⽋損メ カニズム間の違いを計測
理想的損失の理論的上界 16 PMDを使うことで,傾向スコアに依存しない理想的損失の上界を導出する With probability at least 1-δ: Propensity Matrix
Divergence (PMD) ナイーブ損失 ラデマッハ複雑度
Domain Adversarial Matrix Factorization (DAMF) 17 理論的上界から⽰唆された損失を最⼩化する:
Domain Adversarial Matrix Factorization (DAMF) 18 PMDを経験的に近似する: 得られたR*を使って損失関数を最⼩化:
実験: データセット 19 真の分布と観測分布にズレのある2つのデータセットを使⽤ Yahoo! R3: ⾳楽の評価データセット(15400 users) Coat: ショッピングデータセット(300
users)
実験: ⽐較⼿法 ⾏列分解を以下の損失関数によって最適化: • ナイーブ損失 • IPS損失 [Schnabel et al.2016]
• Doubly Robust(DR)損失 [Wang et al.2019] • CauseE [Bonner and Vasile.2018] • DAMF (our proposal) 20 傾向スコアが必要 MCARデータが必要& 理論的解釈が困難 傾向スコアは不必要 & 理論的妥当性を有する
実験: ⽐較⼿法 IPS損失とDR損失については,傾向スコアとして以下を使⽤: 21 真の傾向スコアを使った場合についても参考として報告
実験: 傾向スコアベースの⽅法の問題点 IPS/DRを⽤いた⽅法は,MCARデータが使えない場合には性能が低下 22 傾向スコアベース⼿法の問題を実験的に確認
実験: 予測の評価 DAMFは予測の評価において,現実的なベースラインより良い性能を⽰す 23
実験: ランキング性能 DAMFはランキング指標において,全てのベースラインより良い性能を⽰す 24
実験: 理論的上界 傾向スコアに独⽴な理論的上界は概ね適切に機能している 25
• 選択バイアス下における傾向スコアに依存した既存⼿法の問題点を指摘 • 適切な推定のためには実⽤上得ることの難しいMCARデータが必要 • 本研究: MNARデータのみから学習を⾏う推薦システムを構築する • 傾向スコアに依存しない汎化誤差バウンドを導出 •
そのバウンドを最⼩化する⼿法を提案 • MNARデータのみの設定でも優れた性能を⽰すことを実験で確認 26 まとめ
Thank you for listening! 27