Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ネットワークエンジニアがニューラルネットワークをやってみた
Search
nori
April 22, 2017
Technology
0
3.1k
ネットワークエンジニアがニューラルネットワークをやってみた
ネットワークプログラマビリティ勉強会#12の資料です
https://network-programmability.connpass.com/event/54303/
nori
April 22, 2017
Tweet
Share
More Decks by nori
See All by nori
NetOps NG
norin
0
840
Other Decks in Technology
See All in Technology
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
280
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
130
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
6
1.6k
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
500
【AWS re:Invent 2025速報】AIビルダー向けアップデートをまとめて解説!
minorun365
4
530
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
510
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2.1k
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
250
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
200
regrowth_tokyo_2025_securityagent
hiashisan
0
250
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Balancing Empowerment & Direction
lara
5
800
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
How STYLIGHT went responsive
nonsquared
100
6k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Transcript
ωοτϫʔΫΤϯδχΞ͕χϡʔϥϧωοτϫʔΫΛͬͯΈͨ Network Programabilty #12 @_norin_
ࣗݾհ なまえ こじま ただのり おしごと 元インフラ屋、域LAN作ったりとか twitter @_norin_
✦ 神経細胞を計算モデル化したもの ͬ͘͟ΓχϡʔϥϧωοτϫʔΫ ೖྗ ग़ྗ Y Z [ z =
w1 ɾ x + w2 ɾ y X X ͜ΕΛΈ߹Θͤͯෳࡶͳͷʹͨ͠ͷ͕ ΠϚυΩͷχϡʔϥϧωοτϫʔΫ
//ͷ͔͍ͭͲ͜Ζ ✦ 分類 画像のタグ付け(検索エンジン) ✦ 判別 手書き文字判別(Tensorflowのチュートリアル) きゅうりの等級分け ✦ 予測
天気、気温など過去データからの未来予測 既存文章から新規文章の生成
ωοτϫʔΫతظʁ ✦ フローからDDoS判別 ✦ 障害予測 この辺りは実データでやらないとおもしろくない そのうちどこかのIXかIDCさんが発表してくれるでしょう 期待の目
ຊͷϝχϡʔ ネットワークエンジニアなら一度は作る ɹɹ1JOHʹԠ͢ΔχϡʔϥϧωοτϫʔΫ "シェフのきまぐれICMP Responder
͜͜Λ//Ͱ࡞Δ 192.168.0.1→192.168.0.2のICMP Echoに対しReplayを生成する ߏ 192.168.0.1 192.168.0.2 Echo Reply
σϞ
݁Ռ "γΣϑ͕ؾ·͙Ε͗͢·ͨ͠ //ؤݻΦϠξͩͬͨ
✦ フレームワークはTensorFlowを利用 ✦ 学習データはPingの実データをキャプチャしたもの ✦ パケットを1514バイトの配列としてみなす ✦ 先頭42バイトが入出力データ Ethernet/IP/ICMPヘッダ 計算量とペイロードは変化しない・変化して欲しくないため
ͭͬͯ͘Έͨ// &UIFS)FBEFS *1)FBEFS *$.1)FBEFS 1BZMPBE 14byte 20byte 8byte
ͭͬͯ͘Έͨ// ӅΕͻͱͭ 42コ
ͭͬͯ͘Έͨ//ˌ ……… ӅΕºશଓ
ͭͬͯ͘Έͨ//ˌ ࡾっぽいナニカ
ύέοτ͕ᨅΔ༁ ✦ 元データのバリエーション不足 ✦ 192.168.0.1→192.168.0.2のPing実データから教師データを自動生成 ✦ L2やルータ越えだとMACアドレスも固定される ✦ データ数は多いが変化の少ないデータばかりに。。。 ✦
DDoSなどの実フローか自動生成でもバリエーションが必要 EtherDst EtherSrc IPDst IPSrc ID Chksum ICMP chksum Payload มԽ͢Δͷ͚ͩ͜͜
ύέοτ͕ᨅΔ༁ ✦ 教師データのバリエーション不足による部分最適化 ✦ 誤差関数がイマイチ チェックサムくらいが誤差と期待していた ✦ そもそもバイト単位での誤差ゼロが期待値 パケット全体で誤差がゼロでは意味がない ✦
(推測)バイト計算の差が影響しているかも 0x7Fと0x80の差分と127と128の差分の違い 精度と桁が実数とバイトで異なる ✦
ύέοτ͕ᨅΔ༁ ✦ NNのネットワーク構成が不適切 ✦ アドレス入替、ICMP Code書き換え、チェックサム として隠れ層5で設計 ✦ 線形部分が多く、多層の意味をなさなかった 非線形のチェックサム部のみで活性化関数を利用すべき?
✦
1JOHΛฦ͢ʹ 1)Ethernetアドレスを入れ替える 2)IPアドレスを入れ替える 3)IPヘッダ内の設定(�ID、TTL、etc ) 4)IPチェックサム設定 5)ICMP Codeの設定(Reply) 6)ICMPチェックサム設定 7)送信
代数的に考えてみる アドレスの入れ替え 単純な線形変換 νϣτ͘ͳΔ [ 0 1 1 0] [
x y] = [ y x] A = [ 0 E E 0] A ⋅ [ Ether Dst Ether Src ] = [ Ether Src Ether Dst ] ※ &୯Ґߦྻ
IPもまとめて送受信アドレスを入れ替え νϣτ͘ͳΔ 0 E 0 0 E 0 0 0
0 0 0 E 0 0 E 0 Ether Dst Ether Src IP Dst IP Src = Ether Src Ether Dst IP Src IP Dst
TTLやICMP Code(Replay)の設定はゼロ乗算と加算で対応 (代入の代わり) ��0 × A + B = B
νϣτ͘ͳΔ
チェックサム計算は非線形なのでここは関数化 ������������������IPヘッダ ヘッダを16bit×10の配列としてみると ��sum = IP[0]�+ IP[1] +�… IP[9] ��sum
= (sum & 0xffff) + (sum >> 16)������桁上がり分を下位に加算 ��sum = (sum & 0xffff) + (sum >> 16)������加算後再度繰り上がった場合 ��fchk (IP) = ~sum�����������������������������������������ビット反転 νϣτ͘ͳΔ 7FS)-FO UPT MFO JE qBHͱ͔ 55- 1SPUP DIFDLTVN 4SD *1 %TU *1
まとめるとこんな感じ νϣτ͘ͳΔ Pkt = Ether Dst Ether Src IP Dst
IP Src IP TTL IP Chk ICMP Code ICMP Chk ΞυϨεೖସ θϩΫϦΞ ύϥϝʔλઃఆ Pkt tmp = 0 E E 0 E E 0 0 0 0 0 ⋅ Pkt + 0 0 0 0 IP newTTL 0 ICMP newCode 0
まとめるとこんな感じ やればやるほどNNより関数型言語が向いてる気が νϣτ͘ͳΔ IP newchk = f chk (Pkt tmp
) ICMP newchk = f chk (Pkt tmp ) Pkt reply = Pkt tmp + 0 0 0 0 0 IP newchk 0 ICMP newchk νΣοΫαϜܭࢉ ઃఆͯ͠ Ͱ͖͕͋Γ
これを期待してアドレス入れ替え行列が学習されると。。。 νϣτ͘ͳΔ 0 E 6 0 0 E 6 0
0 0 0 0 0 E 4 0 0 E 4 0 ظͯ͠ΔϞϊ ͤΊͯର͕֯θϩʹͳͬͯ͘ΕΕͳʔ ͜Ε͕ݱ࣮ −0.02153469 0.09266856 −0.02674774 ⋯ 0.08597313 −0.03119319 0.1256434 ⋯ 0.04272136 −0.07684021 0.03384783 ⋮ ⋮ ⋮ ⋱ ܭࢉ͞ΕͨϞϊ
·ͱΊͱࡶײ NWエンジニアがニューラルネットワークをやってみた �今日は ニューラルネットワークプログラマビリティ勉強会 君も今日から�ニューラルネットワークエンジニア
·ͱΊͱࡶײ ✦ ニューラルネットワークに必要な数学は教養課程の線形代数 ✦ �遊んでみるだけならフレームワーク利用が簡単 TensorFlow、Caffe、Chainer ✦ オンラインならplayground ��http://playground.tensorflow.org/
·ͱΊͱࡶײ ✦ TensorFlowがとっつきにくい ✦ �フレームワークが難しいのはWebでもAPIでも一緒 Rails、Play、etc… ✦ ��やりたいことを実現する手段を探すのが一番の手間 チュートリアルから先をやってる記事が思いのほか少ない ✦
数学用語の英語表記がガガガ �abs/squareくらいはなんとか �determinant = 行列式、transpose = 逆行列 辺りになると? ✦
·ͱΊͱࡶײ ✦ 本質的な難しさはデータの理解とNNの設計 ✦ データの特徴と期待する出力の理解が必要 データへの異常な愛は必須 ✦ �ニューロンや隠れ層の数、特徴を掴むのは経験則 通信ネットワーク同様 ✦
�まずは先駆者や既存のものの写経から始めましょう ナナメウエなネタは大変です
·ͱΊͱࡶײ ✦ NNは通信ネットワークに向いてる?? ✦ 「プロトコル」はルールそのものなのでルールベースの方が簡単 ✦ NNフレームワークが実数を前提としている パケットの値の範囲は 0≦χ≦255�(u_int8_t) ���https://example.com:443.141592/��とかやだなー
でもIPv4アドレスが実数ならIPv6いらないんじゃ? ✦ 整数、ビット演算など計算機向けのNN/FWがあっても良さそう
·ͱΊͱࡶײ ✦ パケット加工以外の使い所 ✦ フロー解析、予測 ✦ RFC読み込み→プロトコル自動生成 ✦ キュウリの等級判別→パケットの等級判別?
·ͱΊͱࡶײ ✦ フレームワークは無償だが学習コストは高い それなりの時間が必要 ✦ 計算コストはクラウドで解決 いい時代になりました
Thank you