Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An introduction of statistical learning
Search
Nakamura, Ryotaro
June 28, 2017
Science
0
33
An introduction of statistical learning
Nakamura, Ryotaro
June 28, 2017
Tweet
Share
More Decks by Nakamura, Ryotaro
See All by Nakamura, Ryotaro
Duct for beginners.
nryotaro
0
3.9k
Learn Go in 15 minutes
nryotaro
0
33
Seven architectural patterns
nryotaro
1
92
Improving Performance with Parallel Programming
nryotaro
0
44
Other Decks in Science
See All in Science
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
120
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
200
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
370
機械学習を支える連続最適化
nearme_tech
PRO
1
170
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
320
DEIM2024 チュートリアル ~AWSで生成AIのRAGを使ったチャットボットを作ってみよう~
yamahiro
3
1.4k
証明支援系LEANに入門しよう
unaoya
0
450
学術講演会中央大学学員会八王子支部
tagtag
0
240
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
140
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
PRO
0
250
JSol'Ex : traitement d'images solaires en Java
melix
0
120
(2024) Livres, Femmes et Math
mansuy
0
110
Featured
See All Featured
Fireside Chat
paigeccino
34
3.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
280
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
800
Designing Experiences People Love
moore
138
23k
Building an army of robots
kneath
302
44k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
GraphQLとの向き合い方2022年版
quramy
44
13k
Transcript
ػցֶशษڧձ ୈ 1 ճ தଜ ྒྷଠ June 13, 2017
Table of contents Supervised Learning 1. Classification 2. Perceptron 3.
Regression Unsupervised Learning 4. Clustering 1
ࠓͷඪ ࣍ճҎ߱ʹֶͿΞϧΰϦζϜͷ֓ཁΛΔ ΞϧΰϦζϜͱద༻ྫ ΞϧΰϦζϜ ద༻ྫ ྨ εύϜϝʔϧఆ ճؼੳ ച্༧ଌ ΫϥελϦϯά
ը૾ͷݮ৭ॲཧ 2
ύϥϝτϦοΫ๏ ϞσϧʢࣜʣΛԾఆ͠ɼϞσϧͷ࠷దͳύϥϝλΛֶश͢Δ ύϥϝτϦοΫ๏ͷखॱ 1. σʔλͷ༧ଌϞσϧΛԾఆ 2. Ϟσϧͷύϥϝλͷ ධՁج४ΛܾΊΔ 3. ύϥϝλΛܾΊΔ
0.0 0.2 0.4 0.6 0.8 1.0 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 Ұ࣍ؔͷϞσϧͷύϥϝλௐ 3
Classification
ྨ Ϋϥεʹྨ͞ΕͨطଘσʔλΛݩʹ৽نσʔλΛྨ͢Δ ΞϧΰϦζϜ • ύʔηϓτϩϯ • ϩδεςΟοΫճؼ 4
Perceptron
ύʔηϓτϩϯ, Ϟσϧ ઢܗͳϞσϧ f Λઃఆ͢Δ f (x, y) = w0
+ w1x + w2y f (x, y) > 0 ⇒ t = +1 f (x, y) < 0 ⇒ t = −1 −20 −10 0 10 20 30 x −30 −20 −10 0 10 20 y t = +1 t = -1 ଐੑ t = ±1 Λͭσʔλ܈ ઢ্ͷ (x′, y′) f (x′, y′) = 0 ΛΈͨ͢ 5
ύʔηϓτϩϯ, ධՁج४ʢޡࠩؔʣ ޡࠩؔ E ͕࠷খʹͳΔ wi ΛٻΊΔ E = N
∑ i=1 {− (w0 + w1x + w2y) ti } = N ∑ i=1 (−f (xi , yi )ti ) • N σʔλ • ޡྨͩͱ −f (xi , yi )ti > 0 −20 −10 0 10 20 30 x −30 −20 −10 0 10 20 y t = +1 t = -1 ଐੑ t = ±1 Λͭσʔλ܈ 6
ϩδεςΟοΫճؼ, Ϟσϧ ύʔηϓτϩϯͱಉ͘͡ઢܗϞσϧ f Λઃఆ͢Δ f (x, y) = w0
+ w1x + w2y f (x, y) > 0 ⇒ t = +1 f (x, y) < 0 ⇒ t = −1 −30 −20 −10 0 10 20 30 x −20 −15 −10 −5 0 5 10 15 20 y t = +1 t = -1 f (x, y) ͕૿Ճ͢Δ͖ 7
ϩδεςΟοΫճؼ, Ϟσϧ ͨͩ͠ɼ|f | ͕େ͖͍΄Ͳ t Ͱ͋Δ͕֬ߴ͍ͱ͢Δ ϩδεςΟοΫؔ σ (α)
= 1 1 + e−α Λಋೖ͠ɼ (x′, y′) ͕ t = 1 Ͱ͋Δ֬Λ 0 < σ ( f ( x′, y′ )) < 1 ͱ͢Δ −4 −3 −2 −1 0 1 2 3 4 α 0.0 0.2 0.4 0.6 0.8 1.0 σ (α) ϩδεςΟοΫؔͷάϥϑ 8
ϩδεςΟοΫճؼ, ධՁج४ʢ࠷ਪఆʣ ܇࿅σʔλ͕ಘΒΕΔ֬ P Λ࠷େʹ͢Δ wi ΛٻΊΔ p(x, y) =
σ(x0 + w1x + w2y) P = N ∏ i p (xi , yi )tn {1 − p (xi , yi )}1−tn ܇࿅σʔλ࠷ൃੜ͕֬ߴ͍σʔλͰ͋ΔͱԾఆ͍ͯ͠Δ 9
Regression
ճؼੳ, ϞσϧͱධՁج४ʢ࠷খೋʣ σʔλ͕ M ࣍ଟ߲ࣜ f ʹै͏ͱͯ͠ɼೋޡࠩ ED Λ࠷খʹ͢Δ ύϥϝλ
wi ΛબͿ f (x) = M ∑ m=0 wmxm ED = 1 2 N ∑ n=1 {f (xn) − tn}2 0 2 4 6 8 10 −15 −10 −5 0 5 ground truth degree 3 degree 4 degree 5 training points M ∈ {3, 4, 5} ͷଟ߲ࣜۙࣅྫ 10
Clustering
k ฏۉ๏ σʔλؒͷڑΛٻΊɼσʔλΛ k ݸͷΫϥελʹ͚Δ −2 −1 0 1 2
3 0 1 2 3 4 5 σʔλू߹ −2 −1 0 1 2 3 0 1 2 3 4 5 cluster 1 cluster 2 cluster 3 centroids k = 3 ͷΫϥελ Ϋϥελ͝ͱʹදσʔλΛܾΊɼදͷۙ͘ͷσʔλू߹Ͱ ΫϥελΛ࡞Δ 11
k ฏۉ๏ͷΞϧΰϦζϜ ೖྗ: σʔλू߹ D = { x(1), x(2), ·
· · , x(|D|) } : Ϋϥελ k ແ࡞ҝʹ m1, m2 · · · , mk ΛܾΊΔ until ऩଋ foreach x(i) ∈ D cmax = arg max c sim ( x(i), mc ) σʔλू߹ͷׂ insert x(i)into cmax end foreach ∀c, mc = 1 |c| ∑ x(i)∈c x(i) දϕΫτϧΛ࠶ܭࢉ end until 12