Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An introduction of statistical learning
Search
Nakamura, Ryotaro
June 28, 2017
Science
0
43
An introduction of statistical learning
Nakamura, Ryotaro
June 28, 2017
Tweet
Share
More Decks by Nakamura, Ryotaro
See All by Nakamura, Ryotaro
Duct for beginners.
nryotaro
0
4.1k
Learn Go in 15 minutes
nryotaro
0
37
Seven architectural patterns
nryotaro
1
110
Improving Performance with Parallel Programming
nryotaro
0
55
Other Decks in Science
See All in Science
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
120
データマイニング - グラフデータと経路
trycycle
PRO
1
230
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1k
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
210
2025-06-11-ai_belgium
sofievl
1
170
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
500
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
210
データベース03: 関係データモデル
trycycle
PRO
1
280
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
320
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
凸最適化からDC最適化まで
santana_hammer
1
310
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
We Have a Design System, Now What?
morganepeng
53
7.8k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Site-Speed That Sticks
csswizardry
13
930
Docker and Python
trallard
46
3.6k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Thoughts on Productivity
jonyablonski
71
4.9k
Bash Introduction
62gerente
615
210k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Transcript
ػցֶशษڧձ ୈ 1 ճ தଜ ྒྷଠ June 13, 2017
Table of contents Supervised Learning 1. Classification 2. Perceptron 3.
Regression Unsupervised Learning 4. Clustering 1
ࠓͷඪ ࣍ճҎ߱ʹֶͿΞϧΰϦζϜͷ֓ཁΛΔ ΞϧΰϦζϜͱద༻ྫ ΞϧΰϦζϜ ద༻ྫ ྨ εύϜϝʔϧఆ ճؼੳ ച্༧ଌ ΫϥελϦϯά
ը૾ͷݮ৭ॲཧ 2
ύϥϝτϦοΫ๏ ϞσϧʢࣜʣΛԾఆ͠ɼϞσϧͷ࠷దͳύϥϝλΛֶश͢Δ ύϥϝτϦοΫ๏ͷखॱ 1. σʔλͷ༧ଌϞσϧΛԾఆ 2. Ϟσϧͷύϥϝλͷ ධՁج४ΛܾΊΔ 3. ύϥϝλΛܾΊΔ
0.0 0.2 0.4 0.6 0.8 1.0 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 Ұ࣍ؔͷϞσϧͷύϥϝλௐ 3
Classification
ྨ Ϋϥεʹྨ͞ΕͨطଘσʔλΛݩʹ৽نσʔλΛྨ͢Δ ΞϧΰϦζϜ • ύʔηϓτϩϯ • ϩδεςΟοΫճؼ 4
Perceptron
ύʔηϓτϩϯ, Ϟσϧ ઢܗͳϞσϧ f Λઃఆ͢Δ f (x, y) = w0
+ w1x + w2y f (x, y) > 0 ⇒ t = +1 f (x, y) < 0 ⇒ t = −1 −20 −10 0 10 20 30 x −30 −20 −10 0 10 20 y t = +1 t = -1 ଐੑ t = ±1 Λͭσʔλ܈ ઢ্ͷ (x′, y′) f (x′, y′) = 0 ΛΈͨ͢ 5
ύʔηϓτϩϯ, ධՁج४ʢޡࠩؔʣ ޡࠩؔ E ͕࠷খʹͳΔ wi ΛٻΊΔ E = N
∑ i=1 {− (w0 + w1x + w2y) ti } = N ∑ i=1 (−f (xi , yi )ti ) • N σʔλ • ޡྨͩͱ −f (xi , yi )ti > 0 −20 −10 0 10 20 30 x −30 −20 −10 0 10 20 y t = +1 t = -1 ଐੑ t = ±1 Λͭσʔλ܈ 6
ϩδεςΟοΫճؼ, Ϟσϧ ύʔηϓτϩϯͱಉ͘͡ઢܗϞσϧ f Λઃఆ͢Δ f (x, y) = w0
+ w1x + w2y f (x, y) > 0 ⇒ t = +1 f (x, y) < 0 ⇒ t = −1 −30 −20 −10 0 10 20 30 x −20 −15 −10 −5 0 5 10 15 20 y t = +1 t = -1 f (x, y) ͕૿Ճ͢Δ͖ 7
ϩδεςΟοΫճؼ, Ϟσϧ ͨͩ͠ɼ|f | ͕େ͖͍΄Ͳ t Ͱ͋Δ͕֬ߴ͍ͱ͢Δ ϩδεςΟοΫؔ σ (α)
= 1 1 + e−α Λಋೖ͠ɼ (x′, y′) ͕ t = 1 Ͱ͋Δ֬Λ 0 < σ ( f ( x′, y′ )) < 1 ͱ͢Δ −4 −3 −2 −1 0 1 2 3 4 α 0.0 0.2 0.4 0.6 0.8 1.0 σ (α) ϩδεςΟοΫؔͷάϥϑ 8
ϩδεςΟοΫճؼ, ධՁج४ʢ࠷ਪఆʣ ܇࿅σʔλ͕ಘΒΕΔ֬ P Λ࠷େʹ͢Δ wi ΛٻΊΔ p(x, y) =
σ(x0 + w1x + w2y) P = N ∏ i p (xi , yi )tn {1 − p (xi , yi )}1−tn ܇࿅σʔλ࠷ൃੜ͕֬ߴ͍σʔλͰ͋ΔͱԾఆ͍ͯ͠Δ 9
Regression
ճؼੳ, ϞσϧͱධՁج४ʢ࠷খೋʣ σʔλ͕ M ࣍ଟ߲ࣜ f ʹै͏ͱͯ͠ɼೋޡࠩ ED Λ࠷খʹ͢Δ ύϥϝλ
wi ΛબͿ f (x) = M ∑ m=0 wmxm ED = 1 2 N ∑ n=1 {f (xn) − tn}2 0 2 4 6 8 10 −15 −10 −5 0 5 ground truth degree 3 degree 4 degree 5 training points M ∈ {3, 4, 5} ͷଟ߲ࣜۙࣅྫ 10
Clustering
k ฏۉ๏ σʔλؒͷڑΛٻΊɼσʔλΛ k ݸͷΫϥελʹ͚Δ −2 −1 0 1 2
3 0 1 2 3 4 5 σʔλू߹ −2 −1 0 1 2 3 0 1 2 3 4 5 cluster 1 cluster 2 cluster 3 centroids k = 3 ͷΫϥελ Ϋϥελ͝ͱʹදσʔλΛܾΊɼදͷۙ͘ͷσʔλू߹Ͱ ΫϥελΛ࡞Δ 11
k ฏۉ๏ͷΞϧΰϦζϜ ೖྗ: σʔλू߹ D = { x(1), x(2), ·
· · , x(|D|) } : Ϋϥελ k ແ࡞ҝʹ m1, m2 · · · , mk ΛܾΊΔ until ऩଋ foreach x(i) ∈ D cmax = arg max c sim ( x(i), mc ) σʔλू߹ͷׂ insert x(i)into cmax end foreach ∀c, mc = 1 |c| ∑ x(i)∈c x(i) දϕΫτϧΛ࠶ܭࢉ end until 12