Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An introduction of statistical learning
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Nakamura, Ryotaro
June 28, 2017
Science
0
43
An introduction of statistical learning
Nakamura, Ryotaro
June 28, 2017
Tweet
Share
More Decks by Nakamura, Ryotaro
See All by Nakamura, Ryotaro
Duct for beginners.
nryotaro
0
4.2k
Learn Go in 15 minutes
nryotaro
0
42
Seven architectural patterns
nryotaro
1
110
Improving Performance with Parallel Programming
nryotaro
0
55
Other Decks in Science
See All in Science
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
190
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
160
検索と推論タスクに関する論文の紹介
ynakano
1
150
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
510
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
510
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Accelerated Computing for Climate forecast
inureyes
PRO
0
150
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
200
Featured
See All Featured
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
130
Utilizing Notion as your number one productivity tool
mfonobong
3
220
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
4 Signs Your Business is Dying
shpigford
187
22k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
380
Optimising Largest Contentful Paint
csswizardry
37
3.6k
WENDY [Excerpt]
tessaabrams
9
36k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
ラッコキーワード サービス紹介資料
rakko
1
2.3M
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Transcript
ػցֶशษڧձ ୈ 1 ճ தଜ ྒྷଠ June 13, 2017
Table of contents Supervised Learning 1. Classification 2. Perceptron 3.
Regression Unsupervised Learning 4. Clustering 1
ࠓͷඪ ࣍ճҎ߱ʹֶͿΞϧΰϦζϜͷ֓ཁΛΔ ΞϧΰϦζϜͱద༻ྫ ΞϧΰϦζϜ ద༻ྫ ྨ εύϜϝʔϧఆ ճؼੳ ച্༧ଌ ΫϥελϦϯά
ը૾ͷݮ৭ॲཧ 2
ύϥϝτϦοΫ๏ ϞσϧʢࣜʣΛԾఆ͠ɼϞσϧͷ࠷దͳύϥϝλΛֶश͢Δ ύϥϝτϦοΫ๏ͷखॱ 1. σʔλͷ༧ଌϞσϧΛԾఆ 2. Ϟσϧͷύϥϝλͷ ධՁج४ΛܾΊΔ 3. ύϥϝλΛܾΊΔ
0.0 0.2 0.4 0.6 0.8 1.0 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 Ұ࣍ؔͷϞσϧͷύϥϝλௐ 3
Classification
ྨ Ϋϥεʹྨ͞ΕͨطଘσʔλΛݩʹ৽نσʔλΛྨ͢Δ ΞϧΰϦζϜ • ύʔηϓτϩϯ • ϩδεςΟοΫճؼ 4
Perceptron
ύʔηϓτϩϯ, Ϟσϧ ઢܗͳϞσϧ f Λઃఆ͢Δ f (x, y) = w0
+ w1x + w2y f (x, y) > 0 ⇒ t = +1 f (x, y) < 0 ⇒ t = −1 −20 −10 0 10 20 30 x −30 −20 −10 0 10 20 y t = +1 t = -1 ଐੑ t = ±1 Λͭσʔλ܈ ઢ্ͷ (x′, y′) f (x′, y′) = 0 ΛΈͨ͢ 5
ύʔηϓτϩϯ, ධՁج४ʢޡࠩؔʣ ޡࠩؔ E ͕࠷খʹͳΔ wi ΛٻΊΔ E = N
∑ i=1 {− (w0 + w1x + w2y) ti } = N ∑ i=1 (−f (xi , yi )ti ) • N σʔλ • ޡྨͩͱ −f (xi , yi )ti > 0 −20 −10 0 10 20 30 x −30 −20 −10 0 10 20 y t = +1 t = -1 ଐੑ t = ±1 Λͭσʔλ܈ 6
ϩδεςΟοΫճؼ, Ϟσϧ ύʔηϓτϩϯͱಉ͘͡ઢܗϞσϧ f Λઃఆ͢Δ f (x, y) = w0
+ w1x + w2y f (x, y) > 0 ⇒ t = +1 f (x, y) < 0 ⇒ t = −1 −30 −20 −10 0 10 20 30 x −20 −15 −10 −5 0 5 10 15 20 y t = +1 t = -1 f (x, y) ͕૿Ճ͢Δ͖ 7
ϩδεςΟοΫճؼ, Ϟσϧ ͨͩ͠ɼ|f | ͕େ͖͍΄Ͳ t Ͱ͋Δ͕֬ߴ͍ͱ͢Δ ϩδεςΟοΫؔ σ (α)
= 1 1 + e−α Λಋೖ͠ɼ (x′, y′) ͕ t = 1 Ͱ͋Δ֬Λ 0 < σ ( f ( x′, y′ )) < 1 ͱ͢Δ −4 −3 −2 −1 0 1 2 3 4 α 0.0 0.2 0.4 0.6 0.8 1.0 σ (α) ϩδεςΟοΫؔͷάϥϑ 8
ϩδεςΟοΫճؼ, ධՁج४ʢ࠷ਪఆʣ ܇࿅σʔλ͕ಘΒΕΔ֬ P Λ࠷େʹ͢Δ wi ΛٻΊΔ p(x, y) =
σ(x0 + w1x + w2y) P = N ∏ i p (xi , yi )tn {1 − p (xi , yi )}1−tn ܇࿅σʔλ࠷ൃੜ͕֬ߴ͍σʔλͰ͋ΔͱԾఆ͍ͯ͠Δ 9
Regression
ճؼੳ, ϞσϧͱධՁج४ʢ࠷খೋʣ σʔλ͕ M ࣍ଟ߲ࣜ f ʹै͏ͱͯ͠ɼೋޡࠩ ED Λ࠷খʹ͢Δ ύϥϝλ
wi ΛબͿ f (x) = M ∑ m=0 wmxm ED = 1 2 N ∑ n=1 {f (xn) − tn}2 0 2 4 6 8 10 −15 −10 −5 0 5 ground truth degree 3 degree 4 degree 5 training points M ∈ {3, 4, 5} ͷଟ߲ࣜۙࣅྫ 10
Clustering
k ฏۉ๏ σʔλؒͷڑΛٻΊɼσʔλΛ k ݸͷΫϥελʹ͚Δ −2 −1 0 1 2
3 0 1 2 3 4 5 σʔλू߹ −2 −1 0 1 2 3 0 1 2 3 4 5 cluster 1 cluster 2 cluster 3 centroids k = 3 ͷΫϥελ Ϋϥελ͝ͱʹදσʔλΛܾΊɼදͷۙ͘ͷσʔλू߹Ͱ ΫϥελΛ࡞Δ 11
k ฏۉ๏ͷΞϧΰϦζϜ ೖྗ: σʔλू߹ D = { x(1), x(2), ·
· · , x(|D|) } : Ϋϥελ k ແ࡞ҝʹ m1, m2 · · · , mk ΛܾΊΔ until ऩଋ foreach x(i) ∈ D cmax = arg max c sim ( x(i), mc ) σʔλू߹ͷׂ insert x(i)into cmax end foreach ∀c, mc = 1 |c| ∑ x(i)∈c x(i) දϕΫτϧΛ࠶ܭࢉ end until 12