Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
乾・岡崎研究室で学んだ大切なこと
Search
Katsuma Narisawa
June 24, 2018
Research
0
1k
乾・岡崎研究室で学んだ大切なこと
東北大学の乾・鈴木研究室で、OBとしてLTした際の資料です。
Katsuma Narisawa
June 24, 2018
Tweet
Share
More Decks by Katsuma Narisawa
See All by Katsuma Narisawa
高単価案件で働くための心構え
nullnull
0
220
TypeScriptとモジュラーモノリスで挑む複雑なWebアプリケーション開発
nullnull
4
5.3k
日本中のカップルを支える技術
nullnull
0
590
Other Decks in Research
See All in Research
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
480
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
740
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
450
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.5k
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
Language Models Are Implicitly Continuous
eumesy
PRO
0
370
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.2k
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
450
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
270
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
420
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
310
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Scaling GitHub
holman
464
140k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
76
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
sira's awesome portfolio website redesign presentation
elsirapls
0
110
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
67
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.5k
Transcript
סɾԬ࡚ݚڀࣨͰֶΜͩ ʢຊञͷඒຯ͠͞Ҏ֎ͷʣେͳ͜ͱ by Katsuma Narisawa @NrNrNr7 Έͪͷ͘ͳΜͱ͔ηϛφʔ
!2 "HFOEB ࣗݾհ סݚڀࣨͰֶΜͩେͳ͜ͱ
!3 ᖒͷ͜ͱΛͬͯΔਓSBJTJOH@IBOE
!4 കᖒళళ
!5 Katsuma Narisawa (28) ౦େֶେֶӃใՊֶݚڀՊΛଔۀޙɺ ৽ଔͰ%F/"ʹೖࣾɻιʔγϟϧήʔϜͷӡ༻Τϯ δχΞͱͯ͠ɺ։ൃҎ֎ʹاըੳͳͲ෯͘ ୲ɻ ݄ɺγΣΞϋεͰͷۨԼͱͷग़ձ͍Λ͖ͬ ͔͚ʹɺגࣜձࣾϥϒάϥϑʹೖࣾɻݱࡏϦʔυ
ΤϯδχΞͱͯ͠ɺ։ൃશൠ͔ΒܦӦ໘ͷิࠤ·Ͱ ୲ɻ ͖ͳͷࣸਅɺཱྀɺຊञɺϏʔϧɻ סɾԬ࡚ݚڀࣨͷظੜɻ Speaker
!6
!7
!8
!9
!10 סɾԬ࡚ݚڀࣨ ˙ݚڀɿؚҙؔೝࣝɺಛʹྔදݱपΓͷݚڀ .Ͱ"$--POH1BQFSɺݴޠॲཧֶձɺใࣾձֶ ձFUD ˙ΠϯλʔϯγοϓόΠτ .1'*4VNNFS*OUFSOTIJQ ./**ͷʮϩϘοτ౦େʹೖΕΔ͔ʯԽֶ୲
./B$5F. ϚϯνΣελʔେֶʣ ˙ڝٕϓϩάϥϛϯάɿͦͦ͜͜ ʢ5PQ$PEFSͷ੨৭͘Β͍ɻ*$1$ΞδΞ۠༧બग़ʣ ˙ͦͷଞւ֎ཱྀߦʹΑ͘ߦͬͯ·ͨ͠
!11 סɾԬ࡚ݚڀࣨͰֶΜͩେͳ͜ͱ
େֶӃͰֶͿ͖ͭͷ͜ͱ ઐత࠷ઌͷࣝ ߟ͑Δྗ ݚڀ׆ಈʮߟ͑ΔྗʯΛཆ͏࠷ߴͷOJT ʢס͞Μʣ
ʮߟ͑Δྗʯͱ ཧతࢥߟೳྗ ൷తࢥߟྗ ൃݟೳྗ ʮͳͥʯΛߟ͑Δ l*TTVF͔Β࢝ΊΑz l༏Ε͍ͨɺ༏Εͨ͑ʹউΔz
ճ ݚڀձͷఆྫൃද A͕ॏཁͦ͏ͳͷͰɺBΛͬͯCΛ໌Β͔ʹ͠·͢
ճ ݚڀձͷఆྫൃද A͕ॏཁͦ͏ͳͷͰɺBΛͬͯCΛ໌Β͔ʹ͠·͢ A͕ॏཁͬͯຊʹͦ͏ͳͷʁ ʹXΛ໌Β͔ʹ͢Δ͜ͱ͕·ͣେʹݟ͑Δ ס͞Μ
ճ ݚڀձͷఆྫൃද A͕ॏཁͦ͏ͳͷͰɺBΛͬͯCΛ໌Β͔ʹ͠·͢ A͕ॏཁͬͯຊʹͦ͏ͳͷʁ ʹXΛ໌Β͔ʹ͢Δ͜ͱ͕·ͣେʹݟ͑Δ ͙͵͵ ס͞Μ
ճ จಡΈձ ͜ͷจʹɺA͕ॻ͔Ε͍ͯͯɺBͱ͍͏ख๏ͰCΛ͍ͬͯͯ ʢུʣ
ճ จಡΈձ ͜ͷจʹɺA͕ॻ͔Ε͍ͯͯɺBͱ͍͏ख๏ͰCΛ͍ͬͯͯ ʢུʣ ݁ہɺ͜ͷจͷϙΠϯτͳΜͳͷʁ จͷΤοηϯεԿͳͷʁ ס͞Μ
ճ จಡΈձ ͜ͷจʹɺA͕ॻ͔Ε͍ͯͯɺBͱ͍͏ख๏ͰCΛ͍ͬͯͯ ʢུʣ ݁ہɺ͜ͷจͷϙΠϯτͳΜͳͷʁ จͷΤοηϯεԿͳͷʁ ͙͵͵ ס͞Μ
ճ म࢜ ʢΠϯλʔϯઌʣAͷ࣮͢Δ͔ʙ
ճ म࢜ ʢΠϯλʔϯઌʣAͷ࣮͢Δ͔ʙ ݁ہɺԿΛղܾ͢Δͷ͕ΰʔϧͳͷʁ ͦͷΰʔϧΛղܾ͢ΔͷʹඞཁͳͷɺຊʹAͷ࣮ͳͷʁ ʢ಄ͷதͷʣ ס͞Μ
ճ म࢜ ʢΠϯλʔϯઌʣAͷ࣮͢Δ͔ʙ ݁ہɺԿΛղܾ͢Δͷ͕ΰʔϧͳͷʁ ͦͷΰʔϧΛղܾ͢ΔͷʹඞཁͳͷɺຊʹAͷ࣮ͳͷʁ ຊͷΰʔϧXͩɻ XΛղܾ͢ΔͷʹɺAͰͳ͘·ͣYʹऔΓΉ͖ͩͳɻ ʢ಄ͷதͷʣ ס͞Μ
ճ ձࣾͷܦӦձٞ ച্͕৳ͼΜͰΔͳ͋ɻ ࢪࡦAͱࢪࡦBͱࢪࡦCͱɺͲΕ͔ΒखΛ͚ͭΔ͖ͩΖ͏ɻ
ճ ձࣾͷܦӦձٞ ച্͕৳ͼΜͰΔͳ͋ɻ ࢪࡦAͱࢪࡦBͱࢪࡦCͱɺͲΕ͔ΒखΛ͚ͭΔ͖ͩΖ͏ɻ ࠓߟ͑Δ͖ɺࢪࡦA-Cͷ͜ͱͳͷͩΖ͏͔ʁ ͦΕ͕ࠓͷձࣾͷίΞͳ՝ͳͷͩΖ͏͔ʁ ʢ಄ͷதͷʣ ʢ֓೦ͱͯ͠ͷʣ ס͞Μ
ճ ձࣾͷܦӦձٞ ച্͕৳ͼΜͰΔͳ͋ɻ ࢪࡦAͱࢪࡦBͱࢪࡦCͱɺͲΕ͔ΒखΛ͚ͭΔ͖ͩΖ͏ɻ ࠓߟ͑Δ͖ɺࢪࡦA-Cͷ͜ͱͳͷͩΖ͏͔ʁ ͦΕ͕ࠓͷձࣾͷίΞͳ՝ͳͷͩΖ͏͔ʁ ࢪࡦA-Cେ͕ͩɺͦΕΑΓ·ͣ ཧͷϓϩμΫτͷঢ়ଶΛ໌֬ʹ͠ͳ͚Ε ʢ಄ͷதͷʣ ʢ֓೦ͱͯ͠ͷʣ
ס͞Μ
ʮԿͷͨΊʹʯʮԿΛ͢Δͷ͔ʯΛৗʹߟ͑Δ ʹࣗͷ಄ͷதʹס͞ΜΛৗறͤ͞Δ ͋ ˞͜Ε͕Ͱ͖͍ͯΔਓɺҙ֎ͱੈͷதʹগͳ͍
େֶӃͰֶͿ͖ͭͷ͜ͱ ઐత࠷ઌͷࣝ ߟ͑Δྗ ˡͪΖΜͬͪ͜େࣄʂ ʢࣾձਓͰֶͿͷͪΐͬͱେมʣ
!28 ͓͡͞Μ͕ʮࠓͷ͏ͪʹษڧ͠ͱ͚Αʂʯͱݴͬͯڹ͔ͳ͍ͱࢥ͏ͷͰɺ ·͋ͱʹ͔͘ɺࠓͷڥΛ࠷େݶָ͠ΜͰ͍ͩ͘͞ʂ