Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Functional Programming and Ruby - EuRuKo
Search
Pat Shaughnessy
June 28, 2013
Technology
2
780
Functional Programming and Ruby - EuRuKo
Slides from Athens, June 2013
Pat Shaughnessy
June 28, 2013
Tweet
Share
More Decks by Pat Shaughnessy
See All by Pat Shaughnessy
20000 Leagues Under ActiveRecord
pat_shaughnessy
0
120
Visualizing Garbage Collection in Rubinius, JRuby and Ruby 2.0
pat_shaughnessy
8
720
Functional Programming and Ruby
pat_shaughnessy
6
1.6k
Dissecting a Ruby Block
pat_shaughnessy
10
440
Other Decks in Technology
See All in Technology
HR Force における DWH の併用事例 ~ サービス基盤としての BigQuery / 分析基盤としての Snowflake ~@Cross Data Platforms Meetup #2「BigQueryと愉快な仲間たち」
ryo_suzuki
0
120
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
120
能登半島地震において デジタルができたこと・できなかったこと
ditccsugii
0
150
プロダクトのコードから見るGoによるデザインパターンの実践 #go_night_talk
bengo4com
1
2.4k
Where will it converge?
ibknadedeji
0
210
小学4年生夏休みの自由研究「ぼくと Copilot エージェント」
taichinakamura
0
680
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
2
610
Uncle Bobの「プロフェッショナリズムへの期待」から学ぶプロの覚悟
nakasho
2
110
SwiftUIのGeometryReaderとScrollViewを基礎から応用まで学び直す:設計と活用事例
fumiyasac0921
0
160
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
2
600
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
180
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
250
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
20
1.2k
GraphQLとの向き合い方2022年版
quramy
49
14k
Why Our Code Smells
bkeepers
PRO
339
57k
The Pragmatic Product Professional
lauravandoore
36
6.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Transcript
foo :: Ord a => [a] -> [a] foo []
= [] foo (p:xs) = (foo lesser) ++ [p] ++ (foo greater) where lesser = filter (< p) xs greater = filter (>= p) xs
None
Ruby is a language designed in the following steps: *
take a simple lisp language * add blocks, inspired by higher order functions * add methods found in Smalltalk * add functionality found in Perl So, Ruby was a Lisp originally, in theory. Let's call it MatzLisp from now on. ;-) ! ! ! ! ! ! ! matz.
None
None
None
None
Haskell... is a polymorphically statically typed, lazy, purely functional language,
quite different from most other programming languages. The language is named for Haskell Brooks Curry, ...
- what is “functional programming?” - higher order functions -
lazy evaluation - memoization
None
higher order functions
[1..10] =>[1, 2, 3, 4, 5, 6, 7, 8, 9,
10] (1..10).to_a
[ x*x | x <- [1..10]] (1..10).collect { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map { |x| x*x }
None
map (\x -> x*x) [1..10] (1..10).map &lambda { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map &(->(x) { x*x })
lazy evaluation
[1..] =>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80, 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,1 05,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123, etc...
take 10 [1..] =>[1,2,3,4,5,6,7,8,9,10]
take 10 [ x+1 | x <- [ x*x |
x <- [1..]]] =>[2,5,10,17,26,37,50,65,82,101]
(1..Float::INFINITY) .lazy .collect { |x| x*x } .collect { |x|
x+1 } .take(10).force =>[2,5,10,17,26,37,50,65,82,101]
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
(1..10).collect { |x| x*x } each Range Enumerable #collect Enumerable#collect
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
p enum.collect { |x| x*x } => [1, 4] Enumerator
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
enum.collect do |x| x*x end
Enumerator Yielder yields Generator do |y| y.yield 1 y.yield 2
end
Enumerator::Lazy calls each yields Enumerator::Lazy calls each yields my block
my block yields yields
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
Step 1: Call "each" Lazy Lazy x*x x+1 yield yield
Infinite range first(10) Step 2: yield to the blocks, one at a time
memoization
slow_fib 0 = 0 slow_fib 1 = 1 slow_fib n
= slow_fib (n-2) + slow_fib (n-1) map slow_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] http://www.haskell.org/haskellwiki/Memoization
None
memoized_fib = (map fib [0 ..] !!) where fib 0
= 0 fib 1 = 1 fib n = memoized_fib (n-2) + memoized_fib (n-1) Typical Haskell magic! http://www.haskell.org/haskellwiki/Memoization
(map fib [0 ..] !!) Infinite, lazy list of return
values A curried function to return the requested fib
[0 ..] (0..Float::INFINITY)
map fib [0 ..] (0..Float::INFINITY) .lazy.map {|x| fib(x) }
(map fib [0 ..] !!) cache = (0..Float::INFINITY) .lazy.map {|x|
fib(x) } nth_element_from_list = lambda { |ary, n| ary[n]} nth_fib = nth_element_from_list.curry[cache]
map memoized_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] `block in <main>': undefined method
`[]' for #<Enumerator::Lazy: #<Enumerator::Lazy: 0..Infinity>:map> (NoMethodError)
each Range Enumerable #collect (0..Float::INFINITY) .lazy.map {|x| fib(x) } nth_element_from_list
= lambda { |ary, n| ary[n]}
@cache = {} @cache[1] = 1 @cache[2] = 1 def
memoized_fib(n) @cache[n] ||= memoized_fib(n-1) + memoized_fib(n-2) end
learn by studying other languages... and acquire a different perspective
on Ruby
Ruby has many functional features, but is not a functional
language