Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Functional Programming and Ruby - EuRuKo
Search
Pat Shaughnessy
June 28, 2013
Technology
2
790
Functional Programming and Ruby - EuRuKo
Slides from Athens, June 2013
Pat Shaughnessy
June 28, 2013
Tweet
Share
More Decks by Pat Shaughnessy
See All by Pat Shaughnessy
20000 Leagues Under ActiveRecord
pat_shaughnessy
0
120
Visualizing Garbage Collection in Rubinius, JRuby and Ruby 2.0
pat_shaughnessy
8
730
Functional Programming and Ruby
pat_shaughnessy
6
1.6k
Dissecting a Ruby Block
pat_shaughnessy
10
450
Other Decks in Technology
See All in Technology
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
330
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
180
グレートファイアウォールを自宅に建てよう
ctes091x
0
150
Power of Kiro : あなたの㌔はパワステ搭載ですか?
r3_yamauchi
PRO
0
100
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
340
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
210
Database イノベーショントークを振り返る/reinvent-2025-database-innovation-talk-recap
emiki
0
100
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
120
手動から自動へ、そしてその先へ
moritamasami
0
300
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
1
120
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
470
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
710
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Bash Introduction
62gerente
615
210k
Rails Girls Zürich Keynote
gr2m
95
14k
How to train your dragon (web standard)
notwaldorf
97
6.4k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
The Cult of Friendly URLs
andyhume
79
6.7k
Being A Developer After 40
akosma
91
590k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Making Projects Easy
brettharned
120
6.5k
4 Signs Your Business is Dying
shpigford
186
22k
Transcript
foo :: Ord a => [a] -> [a] foo []
= [] foo (p:xs) = (foo lesser) ++ [p] ++ (foo greater) where lesser = filter (< p) xs greater = filter (>= p) xs
None
Ruby is a language designed in the following steps: *
take a simple lisp language * add blocks, inspired by higher order functions * add methods found in Smalltalk * add functionality found in Perl So, Ruby was a Lisp originally, in theory. Let's call it MatzLisp from now on. ;-) ! ! ! ! ! ! ! matz.
None
None
None
None
Haskell... is a polymorphically statically typed, lazy, purely functional language,
quite different from most other programming languages. The language is named for Haskell Brooks Curry, ...
- what is “functional programming?” - higher order functions -
lazy evaluation - memoization
None
higher order functions
[1..10] =>[1, 2, 3, 4, 5, 6, 7, 8, 9,
10] (1..10).to_a
[ x*x | x <- [1..10]] (1..10).collect { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map { |x| x*x }
None
map (\x -> x*x) [1..10] (1..10).map &lambda { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map &(->(x) { x*x })
lazy evaluation
[1..] =>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80, 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,1 05,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123, etc...
take 10 [1..] =>[1,2,3,4,5,6,7,8,9,10]
take 10 [ x+1 | x <- [ x*x |
x <- [1..]]] =>[2,5,10,17,26,37,50,65,82,101]
(1..Float::INFINITY) .lazy .collect { |x| x*x } .collect { |x|
x+1 } .take(10).force =>[2,5,10,17,26,37,50,65,82,101]
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
(1..10).collect { |x| x*x } each Range Enumerable #collect Enumerable#collect
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
p enum.collect { |x| x*x } => [1, 4] Enumerator
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
enum.collect do |x| x*x end
Enumerator Yielder yields Generator do |y| y.yield 1 y.yield 2
end
Enumerator::Lazy calls each yields Enumerator::Lazy calls each yields my block
my block yields yields
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
Step 1: Call "each" Lazy Lazy x*x x+1 yield yield
Infinite range first(10) Step 2: yield to the blocks, one at a time
memoization
slow_fib 0 = 0 slow_fib 1 = 1 slow_fib n
= slow_fib (n-2) + slow_fib (n-1) map slow_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] http://www.haskell.org/haskellwiki/Memoization
None
memoized_fib = (map fib [0 ..] !!) where fib 0
= 0 fib 1 = 1 fib n = memoized_fib (n-2) + memoized_fib (n-1) Typical Haskell magic! http://www.haskell.org/haskellwiki/Memoization
(map fib [0 ..] !!) Infinite, lazy list of return
values A curried function to return the requested fib
[0 ..] (0..Float::INFINITY)
map fib [0 ..] (0..Float::INFINITY) .lazy.map {|x| fib(x) }
(map fib [0 ..] !!) cache = (0..Float::INFINITY) .lazy.map {|x|
fib(x) } nth_element_from_list = lambda { |ary, n| ary[n]} nth_fib = nth_element_from_list.curry[cache]
map memoized_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] `block in <main>': undefined method
`[]' for #<Enumerator::Lazy: #<Enumerator::Lazy: 0..Infinity>:map> (NoMethodError)
each Range Enumerable #collect (0..Float::INFINITY) .lazy.map {|x| fib(x) } nth_element_from_list
= lambda { |ary, n| ary[n]}
@cache = {} @cache[1] = 1 @cache[2] = 1 def
memoized_fib(n) @cache[n] ||= memoized_fib(n-1) + memoized_fib(n-2) end
learn by studying other languages... and acquire a different perspective
on Ruby
Ruby has many functional features, but is not a functional
language