Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Spitsgids presentation at the ITS Belgium congress
Search
Pieter Colpaert
October 06, 2016
Technology
0
3.5k
Spitsgids presentation at the ITS Belgium congress
Pieter Colpaert
October 06, 2016
Tweet
Share
More Decks by Pieter Colpaert
See All by Pieter Colpaert
LDES and the Flemish Smart Data Space
pietercolpaert
0
170
Serverless Data
pietercolpaert
0
320
Een eerlijk speelveld door toegang tot data bij Mobility as a Service
pietercolpaert
0
220
Open Data in het West-Vlaams
pietercolpaert
1
160
Your website is a part of a world-wide knowledge graph
pietercolpaert
0
260
GraphQL vs. REST
pietercolpaert
1
840
Open Traffic Lights in the Antwerp Smart Zone
pietercolpaert
0
150
Transmodel as Linked Data: the first step
pietercolpaert
0
170
FAIR data symposium: how to automate data reuse in Mobility as a Service
pietercolpaert
0
110
Other Decks in Technology
See All in Technology
チーリンについて
hirotomotaguchi
6
1.9k
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
670
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
120
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
180
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
380
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
1
730
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
120
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
150
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
110
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
490
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
250
グレートファイアウォールを自宅に建てよう
ctes091x
0
150
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
186
22k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Site-Speed That Sticks
csswizardry
13
1k
Faster Mobile Websites
deanohume
310
31k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
BBQ
matthewcrist
89
9.9k
Building Applications with DynamoDB
mza
96
6.8k
Unsuck your backbone
ammeep
671
58k
Designing for Performance
lara
610
69k
Code Review Best Practice
trishagee
74
19k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Facilitating Awesome Meetings
lara
57
6.7k
Transcript
None
Who came by train today?
Whose train was really busy?
+28% Source: NMBS (2016)
Source: Leefmilieu Brussel (2013)
Source: Rail4Brussels (2016) NUMBER OF PASSENGERS OVER TIME OF DAY
Weekday Saturday Sunday Morning peak (6-9h) Evening peak (15-19h)
How can we try to avoid busy trains? Incentivize people
to take another train
Source: iRail data
Spitsgids We predict how busy your train will be, so
you can leave earlier or later
Meet our 3 indicators
Passenger experience User feedback structurally busy trains
None
None
And now it’s our turn to publish Open Data Both
real-time feedback as our predictions
User feedback Next step: challenging researchers to creating better predictions
iRail query logs User feedback Next step: challenging researchers to
creating better predictions
User feedback weather Next step: challenging researchers to creating better
predictions iRail query logs
User feedback weather Next step: challenging researchers to creating better
predictions iRail query logs events
User feedback weather Next step: challenging researchers to creating better
predictions iRail query logs events open datasets
The budget so far was crowd-funded And financially supported by
It was developed by our open Summer of code students
Arne, Stan and Serkan
Thank you to our app builders Jan Cornelissen (Railer App
- iPhone) Christophe Versieux (BeTrains - Android) and the iRail contributors
Let’s build a world where knowledge creates power for the
many, not the few. @pietercolpaert https://hello.irail.be http://pieter.pm