Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習エンジニアのための新サービス/DeepLens & SageMaker
Search
ryo nakamaru
December 14, 2017
Technology
0
1.1k
機械学習エンジニアのための新サービス/DeepLens & SageMaker
re:Invent2017 で発表された新サービスについて JAWS-UG AI 支部で LT しました
ryo nakamaru
December 14, 2017
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.5k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
210
Firecracker とは何か/what is Firecracker
pottava
12
5.4k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
440
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.2k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.4k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.5k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
490
Other Decks in Technology
See All in Technology
JAWS-UG のイベントで使うハンズオンシナリオを Amazon Q Developer for CLI で作ってみた話
kazzpapa3
0
110
AIに頼りすぎない新人育成術
cuebic9bic
3
320
全員が手を動かす組織へ - 生成AIが変えるTVerの開発現場 / everyone-codes-genai-transforms-tver-development
tohae
0
220
Telemetry APIから学ぶGoogle Cloud ObservabilityとOpenTelemetryの現在 / getting-started-telemetry-api-with-google-cloud
k6s4i53rx
0
160
Amazon GuardDuty での脅威検出:脅威検出の実例から学ぶ
kintotechdev
0
120
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
600
Kiro と Q Dev で 同じゲームを作らせてみた
r3_yamauchi
PRO
1
110
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
1.1k
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
750
LLM 機能を支える Langfuse / ClickHouse のサーバレス化
yuu26
9
2.5k
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
220
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
210
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Writing Fast Ruby
sferik
628
62k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
800
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Music & Morning Musume
bryan
46
6.7k
Embracing the Ebb and Flow
colly
86
4.8k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Designing for humans not robots
tammielis
253
25k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Transcript
機械学習エンジニアのための新サービス DeepLens & SageMaker JAWS-UG AI #6 @ Dec 14,
2017 Ryo NAKAMARU, SUPINF Inc. / Rescale, Inc.
Amazon SageMaker
3
SageMaker 4 設計 学習 デプロイ • ワンクリック起動 Jupyter notebook •
プリセットされた 機械学習アルゴリ ズム群 ▶ ▶ • ジョブを定義し 学習開始 • 並列分散学習 • ハイパーパラメタ 最適化 • シンプルな API で モデルをデプロイ • フルマネージドな 推論エンドポイント の提供
SageMaker • 一部機能だけの利用も OK ‣ 設計+学習機能だけ使う ‣ 推論エンドポイントだけ使う etc.. •
抽象度の高い SageMaker API • Docker を使えば学習・推論のカスタマイズも 5
SageMaker API 6 • 学習 from sagemaker import KMeans kmeans
= KMeans(k=10, data_location=s3_data_location, output_path=s3_output_location, train_instance_type='ml.c4.8xlarge', train_instance_count=4, role=execution_iam_role) kmeans.fit(kmeans.record_set(train_set[0]))
SageMaker API • デプロイ 7 predictor = kmeans.deploy(instance_type='ml.m4.xlarge', initial_instance_count=1)
SageMaker API 8 • 推論 result = predictor.predict(valid_set[0][0:100])
SageMaker inference bot 9
AWS DeepLens
11
DeepLens での推論 12 DeepLens raw data Local 動画生データ
DeepLens での推論 13 DeepLens raw data Local results Greengrass Inference
with 推論
DeepLens での推論 14 DeepLens raw data Local results AWS Greengrass
IoT Rule Lambda Inference with MQTT 「ホットドック があったよ」
DeepLens へのデプロイ 15 DeepLens AWS SageMaker Trained by EC2 Model
学習
DeepLens へのデプロイ 16 DeepLens AWS DeepLens SageMaker a project Model
Model モデルを インポート
DeepLens へのデプロイ 17 DeepLens AWS DeepLens a project Model 推論
& AWS IoT 連携の実装
DeepLens へのデプロイ 18 DeepLens AWS Greengrass Inference with DeepLens a
project Model デプローイ
DeepLens • 開発者向けデバイス ‣ 動画を使う深層学習をローカルで手軽に回せる ‣ デバイスへのデプロイもとても簡単! • HD ビデオ
& 秒間 10 億回の浮動小数点数演算能力 • 249 USD で予約受付中(Amazon.com) 19
中丸 良 @pottava • AWS Certified Solutions Architect, DevOps Engineer
- Professional • CTO at SUPINF Inc • Solutions Architect at Rescale, Inc. Profile 20
Containerize your app! 21 • クラウド / コンテナ を強みにした受託開発運用、コンサルティング •
2015 年から Docker の本番運用を開始・豊富な CI / CD 事例 • スピンフ、と読みます・・
Cloud HPC with 22 • クラウド HPC シミュレーションプラットフォームの提供 • 2011
年初頭に設立、Peter Thiel や Microsoft から出資 • スケーラブルなシミュレーションや機械学習を!
ご静聴ありがとうございました :) 参考文献: • AWS re:Invent 2017: Introducing Amazon SageMaker
(MCL365) https://www.youtube.com/watch?v=4pbXdsjZx_k • Amazon SageMaker – 機械学習を加速する | Amazon Web Services ブログ https://aws.amazon.com/jp/blogs/news/amazon-sagemaker/ • Extend AWS DeepLens to Send SMS Notifications with AWS Lambda | AWS AI Blog https://aws.amazon.com/jp/blogs/ai/extend- aws-deeplens-to-send-sms-notifications-with-aws-lambda/