Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習エンジニアのための新サービス/DeepLens & SageMaker
Search
ryo nakamaru
December 14, 2017
Technology
0
1.1k
機械学習エンジニアのための新サービス/DeepLens & SageMaker
re:Invent2017 で発表された新サービスについて JAWS-UG AI 支部で LT しました
ryo nakamaru
December 14, 2017
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.5k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
210
Firecracker とは何か/what is Firecracker
pottava
12
5.4k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
440
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.2k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.4k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.5k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
490
Other Decks in Technology
See All in Technology
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
170
250905 大吉祥寺.pm 2025 前夜祭 「プログラミングに出会って20年、『今』が1番楽しい」
msykd
PRO
1
980
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
580
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
220
Codeful Serverless / 一人運用でもやり抜く力
_kensh
7
440
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
420
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
1
410
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
570
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.1k
roppongirb_20250911
igaiga
1
240
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
200
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
130
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Become a Pro
speakerdeck
PRO
29
5.5k
How GitHub (no longer) Works
holman
315
140k
Balancing Empowerment & Direction
lara
3
620
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
GraphQLとの向き合い方2022年版
quramy
49
14k
Six Lessons from altMBA
skipperchong
28
4k
Designing for Performance
lara
610
69k
Into the Great Unknown - MozCon
thekraken
40
2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Transcript
機械学習エンジニアのための新サービス DeepLens & SageMaker JAWS-UG AI #6 @ Dec 14,
2017 Ryo NAKAMARU, SUPINF Inc. / Rescale, Inc.
Amazon SageMaker
3
SageMaker 4 設計 学習 デプロイ • ワンクリック起動 Jupyter notebook •
プリセットされた 機械学習アルゴリ ズム群 ▶ ▶ • ジョブを定義し 学習開始 • 並列分散学習 • ハイパーパラメタ 最適化 • シンプルな API で モデルをデプロイ • フルマネージドな 推論エンドポイント の提供
SageMaker • 一部機能だけの利用も OK ‣ 設計+学習機能だけ使う ‣ 推論エンドポイントだけ使う etc.. •
抽象度の高い SageMaker API • Docker を使えば学習・推論のカスタマイズも 5
SageMaker API 6 • 学習 from sagemaker import KMeans kmeans
= KMeans(k=10, data_location=s3_data_location, output_path=s3_output_location, train_instance_type='ml.c4.8xlarge', train_instance_count=4, role=execution_iam_role) kmeans.fit(kmeans.record_set(train_set[0]))
SageMaker API • デプロイ 7 predictor = kmeans.deploy(instance_type='ml.m4.xlarge', initial_instance_count=1)
SageMaker API 8 • 推論 result = predictor.predict(valid_set[0][0:100])
SageMaker inference bot 9
AWS DeepLens
11
DeepLens での推論 12 DeepLens raw data Local 動画生データ
DeepLens での推論 13 DeepLens raw data Local results Greengrass Inference
with 推論
DeepLens での推論 14 DeepLens raw data Local results AWS Greengrass
IoT Rule Lambda Inference with MQTT 「ホットドック があったよ」
DeepLens へのデプロイ 15 DeepLens AWS SageMaker Trained by EC2 Model
学習
DeepLens へのデプロイ 16 DeepLens AWS DeepLens SageMaker a project Model
Model モデルを インポート
DeepLens へのデプロイ 17 DeepLens AWS DeepLens a project Model 推論
& AWS IoT 連携の実装
DeepLens へのデプロイ 18 DeepLens AWS Greengrass Inference with DeepLens a
project Model デプローイ
DeepLens • 開発者向けデバイス ‣ 動画を使う深層学習をローカルで手軽に回せる ‣ デバイスへのデプロイもとても簡単! • HD ビデオ
& 秒間 10 億回の浮動小数点数演算能力 • 249 USD で予約受付中(Amazon.com) 19
中丸 良 @pottava • AWS Certified Solutions Architect, DevOps Engineer
- Professional • CTO at SUPINF Inc • Solutions Architect at Rescale, Inc. Profile 20
Containerize your app! 21 • クラウド / コンテナ を強みにした受託開発運用、コンサルティング •
2015 年から Docker の本番運用を開始・豊富な CI / CD 事例 • スピンフ、と読みます・・
Cloud HPC with 22 • クラウド HPC シミュレーションプラットフォームの提供 • 2011
年初頭に設立、Peter Thiel や Microsoft から出資 • スケーラブルなシミュレーションや機械学習を!
ご静聴ありがとうございました :) 参考文献: • AWS re:Invent 2017: Introducing Amazon SageMaker
(MCL365) https://www.youtube.com/watch?v=4pbXdsjZx_k • Amazon SageMaker – 機械学習を加速する | Amazon Web Services ブログ https://aws.amazon.com/jp/blogs/news/amazon-sagemaker/ • Extend AWS DeepLens to Send SMS Notifications with AWS Lambda | AWS AI Blog https://aws.amazon.com/jp/blogs/ai/extend- aws-deeplens-to-send-sms-notifications-with-aws-lambda/