$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習エンジニアのための新サービス/DeepLens & SageMaker
Search
ryo nakamaru
December 14, 2017
Technology
0
1.1k
機械学習エンジニアのための新サービス/DeepLens & SageMaker
re:Invent2017 で発表された新サービスについて JAWS-UG AI 支部で LT しました
ryo nakamaru
December 14, 2017
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.6k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
220
Firecracker とは何か/what is Firecracker
pottava
12
5.5k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
440
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.3k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.4k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.5k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
510
Other Decks in Technology
See All in Technology
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.4k
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
180
ChatGPTで論⽂は読めるのか
spatial_ai_network
10
29k
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
230
ディメンショナルモデリングを支えるData Vaultについて
10xinc
1
100
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
800
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
840
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
500
Python 3.14 Overview
lycorptech_jp
PRO
1
120
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
140
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
200
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
YesSQL, Process and Tooling at Scale
rocio
174
15k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Typedesign – Prime Four
hannesfritz
42
2.9k
Bash Introduction
62gerente
615
210k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Making Projects Easy
brettharned
120
6.5k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Transcript
機械学習エンジニアのための新サービス DeepLens & SageMaker JAWS-UG AI #6 @ Dec 14,
2017 Ryo NAKAMARU, SUPINF Inc. / Rescale, Inc.
Amazon SageMaker
3
SageMaker 4 設計 学習 デプロイ • ワンクリック起動 Jupyter notebook •
プリセットされた 機械学習アルゴリ ズム群 ▶ ▶ • ジョブを定義し 学習開始 • 並列分散学習 • ハイパーパラメタ 最適化 • シンプルな API で モデルをデプロイ • フルマネージドな 推論エンドポイント の提供
SageMaker • 一部機能だけの利用も OK ‣ 設計+学習機能だけ使う ‣ 推論エンドポイントだけ使う etc.. •
抽象度の高い SageMaker API • Docker を使えば学習・推論のカスタマイズも 5
SageMaker API 6 • 学習 from sagemaker import KMeans kmeans
= KMeans(k=10, data_location=s3_data_location, output_path=s3_output_location, train_instance_type='ml.c4.8xlarge', train_instance_count=4, role=execution_iam_role) kmeans.fit(kmeans.record_set(train_set[0]))
SageMaker API • デプロイ 7 predictor = kmeans.deploy(instance_type='ml.m4.xlarge', initial_instance_count=1)
SageMaker API 8 • 推論 result = predictor.predict(valid_set[0][0:100])
SageMaker inference bot 9
AWS DeepLens
11
DeepLens での推論 12 DeepLens raw data Local 動画生データ
DeepLens での推論 13 DeepLens raw data Local results Greengrass Inference
with 推論
DeepLens での推論 14 DeepLens raw data Local results AWS Greengrass
IoT Rule Lambda Inference with MQTT 「ホットドック があったよ」
DeepLens へのデプロイ 15 DeepLens AWS SageMaker Trained by EC2 Model
学習
DeepLens へのデプロイ 16 DeepLens AWS DeepLens SageMaker a project Model
Model モデルを インポート
DeepLens へのデプロイ 17 DeepLens AWS DeepLens a project Model 推論
& AWS IoT 連携の実装
DeepLens へのデプロイ 18 DeepLens AWS Greengrass Inference with DeepLens a
project Model デプローイ
DeepLens • 開発者向けデバイス ‣ 動画を使う深層学習をローカルで手軽に回せる ‣ デバイスへのデプロイもとても簡単! • HD ビデオ
& 秒間 10 億回の浮動小数点数演算能力 • 249 USD で予約受付中(Amazon.com) 19
中丸 良 @pottava • AWS Certified Solutions Architect, DevOps Engineer
- Professional • CTO at SUPINF Inc • Solutions Architect at Rescale, Inc. Profile 20
Containerize your app! 21 • クラウド / コンテナ を強みにした受託開発運用、コンサルティング •
2015 年から Docker の本番運用を開始・豊富な CI / CD 事例 • スピンフ、と読みます・・
Cloud HPC with 22 • クラウド HPC シミュレーションプラットフォームの提供 • 2011
年初頭に設立、Peter Thiel や Microsoft から出資 • スケーラブルなシミュレーションや機械学習を!
ご静聴ありがとうございました :) 参考文献: • AWS re:Invent 2017: Introducing Amazon SageMaker
(MCL365) https://www.youtube.com/watch?v=4pbXdsjZx_k • Amazon SageMaker – 機械学習を加速する | Amazon Web Services ブログ https://aws.amazon.com/jp/blogs/news/amazon-sagemaker/ • Extend AWS DeepLens to Send SMS Notifications with AWS Lambda | AWS AI Blog https://aws.amazon.com/jp/blogs/ai/extend- aws-deeplens-to-send-sms-notifications-with-aws-lambda/