Since Explosion Type Ia NS + NS Mergers Type IIp NS + RSG Collision IMBH + WD Collision Pair Production Supernovae -10 -12 -14 -16 -18 -20 -22 M H z=0.45 200Mpc Rumsfelian Challenge LSST 20 Tb/night (raw imaging) 150 TFLOPS (First Data Release ~ 2022) ML Impact at Scale Optimizing Payout over known-knowns, known- unknowns, & unknown- unknowns (Small # of labels of known knowns) ie. Discovery & Classification To Prioritize Followup with Scarce resources
architecture of our 3D conv-net. The model has six convolutional and 3 fully connected layers. The first two convolu- tional layers are followed by average pooling. All layers, except the final layer, use leaky rectified linear units, and all the convo- lutional layers use batch-normalization (b.n.). Figure 7. (top) visualization of inputs that maximize the activa- tion of 7/1024 units (corresponding to seven rows) at the first fully connected layer. In this figure, we have unwrapped the maximiz- ing input sub-cubes for better visualization. (bottom) magnified portion of the top row. vation of a particular unit while treating the input X as the optimization variable (Erhan et al., 2009; Simonyan et al., 2013) X⇤ = arg max X s.t. Xl,i kXk2 ⇣ “Estimating Cosmological Parameters from the Dark Matter Distribution” Ravanbakhsh+ 1711.02033 “Fast Automated Analysis of Strong Gravitational Lenses with Convolutional Neural Networks” Figure 1: Comparison of parameters estimated u true values (x-axis). From left to right, the panels y components of complex ellipticity. The shade Hezaveh, Levasseur, Marshall 1708.08842 Black-Box Cosmological Inference Einstein Radius (model) Einstein Radius (CNN)
RNN encoder/decoder architecture for irregularly sampled time series data. This network uses two RNN layers (specifically, bidirectional gated recurrent units (GRU) [6, 25]) of size 64 for encoding and two for decoding, with a feature embedding size of 8. The encoder takes as inputs the measurement values as well the sampling times (more specifically, the differences between sampling times); the sequence is processed by a hidden recurrent layer to produce a new sequence, which can then be used as the input to another hidden recurrent layer, etc. The fixed-length embedding is constructed by passing the output of the last recurrent layer into a single fully-connected layer with linear activation function and the desired output size. The decoder first repeats the fixed-length embedding nT times, where nT is the length of the desired output sequence, and then appends the sampling time differences to the corresponding elements of the resulting vector sequence. The sampling times are passed to both the encoder and decoder; the feature vector characterizes the functional form of the signal, e.g. Unsupervised feature learning using stacked RNN autoencoder for irregularly sampled time- series, using measurement uncertainty in the loss. Naul, JSB, Perez, van der Walt (2018) 1711.10609 •Architectures and platforms are designed for well-measured images, video, graphs, & text. Our data are different. •But…Our metrics tie directly to inference, with physical meaning •“Small label problem” - expensive to obtain/simulate training data & labels. Need to exploit self-supervised, semi- supervised, and transfer learning.
public data about comet orbits + deep domain knowledge + sophisticated computing Batygin & Brown 1601.05438 A Modest Prediction: discovery data of Planet IX has already been obtained & resides in existing public data archives. It will be a group of clever astronomers & statisticians with a lot of compute resources that will make the retrospective discovery of the century… Massive new planet beyond the orbit of Pluto
space at NERSC •Needed a fast (~10 ms prediction) ML pipeline to decide what data to save •Optimize scoring wrt predict speed, distributability Today’s Compute Architecture Searching for Planet 9 Method: shift & add images by allowable orbital phase space Data: 103k Palomar Transient Factory (PTF) images spanning 795 deg2 over 7.5 years Can distributed model servers efficiently access massive (shared) GPU resources?
Inference Figure 2: The Celeste graphical model. Shaded vertices represent observed random variables. Empty vertices repre- sent latent random variables. Black dots represent constants. Constants denoted by uppercase Greek characters are fixed throughout our procedure. Constants denoted by lowercase Greek letters are inferred, along with the posterior distribu- “Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference” Regier+ 1611.03404 LLNL-PRES-733055 Our hierarchical Bayesian forward models c tolerances for galaxy shear when the mode The forward model of our galaxy image data “Hierarchical probabilistic inference of cosmic shear” Schneider+ 1411.2608
pure noise (c) DRDAE: eccentric (d) EDRDAE: quasi-circular (e) EDRDAE: pure noise (f) EDRDAE: eccentric signals Fig. 4. Performance on GW signals contaminated by real LIGO detector noise with SNRpeak = 0.5. The plots include reconstructed outputs of DRDAE and EDRDAE on quasi-circular signals, pure noise input, and eccentric gravitational waves. Table 3. Ablation study for major parts in EDRDAE MISSING PARTS W/O SA W/O BA W/O CL resilience of the model to denoise signals that are not used during training, i.e., eccentric GWs. Currently, there is no "Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-Encoders” Time (sec) Shen+ 1903.03105 cf. ”Fast likelihood-free cosmology with neural density estimators and active learning” Alsing+ 1903.00007 Turn inference into density estimation task using simulated data 20 Simulation Machine Learning Inference x z <latexit sha1_base64="HjZ6RxRDdZu139wdkhmGLAXlGyY=">AAAoEHicpVpbc9vGFWbSW6q4TdI+5mVdxbHlgDQBUbacjDJuLpN2Jm4cW3bSCpJmASyJHeLmxUImhaI/otMf07dOX/sP+tbH/oe+9JxdkMSV0jj0GAR2v/Ods2fPnj0LykkCnsrx+N9vvPmjH//kpz976+c7b9/4xS/fefe9X71I40y47LkbB7H43qEpC3jEnksuA/Z9IhgNnYB958w/x/7vLphIeRwdy2XCTkM6i/iUu1RC0/l7b//NdtiMR7nk88uEuzITrDg53SHExpZULgOWu3EUMRcFiqOT1I+FZBH59MhMpCF97s4N4gn66sgJqDu/+WBskGH+6Unq0oAdmaeFQaLYY8SDwdDIZUd2FAV0CTaxpKFnmkXdWmAES7JSRVOfJFRKJqKjPI7IfiJJPJ0SK5HFdksa6iKWCaUMZQyXCzdg5YCmPAiOXvlcMiPkEQ+zkKT8UtmOg8H7BtmCrOn0TdUUg2wIG3LSZ5L2yHpUzIdOkLFSfv180xzf7CLzueeB07ZY0vQ4j2jwmpYvSEAdFhTkiJxItpDaPMG8bqMa4H5rulhngrGo03NdaHTR6Q6gbxEFQrlpDMvC9Ykd0ZCRe8ReEh6RfGyMRiPDLBCCM3tSnY9Tckc9DpXQHqGS3BkblhuSIYi74R7Ji0+UmsWVKqyNisWGflGnHpoNbkXuxAuWojROywnGP/OMcjnU4wQYh+PRfWM8muyR4RAomw/W6L5+GLafEPhJt54V8XB/JdHxtFY07HpEbDkg37zSXZONu2pBDYb4ZtVplWxiEHN0QNCDZONCUqq0fpBKq6rSultV2qFTqwzimVgzVhcaEGKfJtuvkRHw1UGNJTWIgEkg+NBJJYdjzTSpM1lrB/RLmp2S5pWSaadcxfZ+UdEtalUn63O93+jFC55txIve/FrLd90P+Vm25hV2DP9ks5FtlrZm2yPMmzEdXCi/17RlcQ07rNeyY3FtG3wTjbBG262YvJYVqLRhhrUyo2GFBVasgvsqMzoUWU1FajE0x4qNoKcMfxVOimtVI6wXkeZIVebajhHXwOBqKqN3O8xsumUVrN226mAba/kTh0UeCdhUHpnjcgl3m6bFzJaYNT6tGfFbKEsklayy7irb46lackO14uARVhyB/DCyDnTC+sBW2PPxB7WFu9giPDQ30ou6WHW717L7o3aeKFPmhlTZAS4mtk9lLooPOpJIhbOWP8hHVaa1AkWJbCmyvTaZVaX6YYaVG9SaTWo2G+a1VoCfv7s7Ho3Vh7RvzPJm9xH59r//GQwGT87fe9+1vdjNQhZJN6BpemKOE3maUyE5VLXFjp2BAVBxUQgjuMXNLD3N1fmhILegxSOwlOF/JIlqrUrkNEzTZegAMoQATZt92NjVd5LJ6eFpzqMkg1re1YqmWUBkTPAwAmcCAUsnWMINdQUHW4nrU0FdKO7rWpRNxkIbvLODyw7uUrA1SuFgAcMmr7iEg0EQS5D0GEwMU+h8VZYWuZg5RT4eHRroS7yYh+P9h5Z5cP/wvvVgcgD7SFsS66q16Hgteg1JVbTWRasy44fAofiKnVtt6VjQaLbSbGrx+5MH44PDQ2v/wHo4Mc3DUvoK4XLEkxLdNXuGl+LUG3gv4zhIaxGTpzyLuFzUG2eCJlAbNlrDLJBcxK8MJ47nkjqpAZcsoGJhTIOYynoootKjKBYhDdSZKk8zZ8pnDe2BLkUdQeesTpBP2TIKkyHNZFxnTuH8+KEbh3AaTiHSIyod7gDkCSyObxJMr+lx/KRk8ZeJz6K0yDMRFFWWxJvCscKAnIYn7Hlq4FX5+agSHQZx4XhUbdZTbxDgqzZjFCrHhPCUxgmLFKGM3SMaBKdoBxOCTetjZFEWAn8I60ctUugSQz3lHgHfBkzWFwt4vOGOnLourJF0RWH7kH7qMpB+6iKLFO4YSqibFPd2cGhII0+rQ5GAw6yIJSQamHPYrD1wg1DvFtIRDpJHM2jVvaMQdhm1eL9iEROQNzEJAI8E1I4dsVclfW5jDGJsFCfmKTzByS51812zKOowuE8gXahILHLYPQVk5QSMd6AqmdsOn6VzntTaophHsD/JBhPEJ7/AudAafZiE3Jcy+fjePdU1isXsHkTzPTBCGyQlDPp7fvExmtVgwxu2sh7cMIMUSEVup9MpDXmwtFPIdonEkFdczUSlKSuOwuwLq5LU1fCwQHrpizDnTRs8Pp1uur1mN5sVec5GtjEbFX9p9HHIHDmHPtbuYy8zfkEDHB2Mh4fspTL0jxAfUUxCunRYXWDJEkDC6oKNDY1B7zRTJBSKrs9ctSxazoQY8uJpP4dO0EBBU9kShqln/aLK2eqlAmyHpcufqWCvs7x8+TKjALXVN9FfRQuzBq1QPbANbg3USFD/xF+m3E1XM14XhgGsYkr6Lg3yx8W5CqCOtYEDr2G/Kc47YMFM1GFfb6EUXpPSxnL0zq5pCz7z5V5DwBGbCPzsaZMuTCCG6nODV2eaJ8X58ZleZnnIU5yaljBrCn95pQxsV+nLQn2f2R6dzRhkQnhowKBGgXB7dl6S4ZMOjeewCTZmhF2oZZCzF62wXXXN233hqu9xu2+26vuq3SdXfcftvqmju+C7uZw3XWf5sJ2tkrI7aUtuulaS4IYvoOAS3MlUlifN9YZ7eXFiVaLkD4V9E/6VkULsEE4IAfsz2bXIOmyQlgnILJJfQCoBLrXXZHCoiUXD54nHhNYwhVKRqLwvOWRJiNjqk9VyX1MQc2QppW/bIp0yZ1ZVKgexs5bktCXIAjiQlXL63tIO/SwOvO4FDy2eOpzVY52oDi2R69Nba1YREWVFvxh0doiwJOVBHG2Ru6BiBeqQXzQkyxW96MJedmMvu7DLbuyyC3vRjb3owspurOy0l4m4Gz7WE/mYST/2GnPoUigq10XM5/hkl7VVHSjiQGyAT/GpG5hCsbjcIJ+px34oj+I6GBu64S7FH0uq1qrnHnsb4KcNsNpMmYu/NpEYglR0x7gKXyx6y9tV3sWmVkKKJJ4OqRM0qgqSdxZSyTYGcR0GsY0hvQ5Duo1BXoehXdZUGC6vw/CnFkMQw1yFMSSia/lxNSlKTG+tML2/jySD4rs5o2AdpgH4IvZNopPkwv6kPYZFIqDyakFvd2J5C3fOO4HzNnDeBZzStpk6hyG6Bb9sYi97SFtAnTw6bW1hF8Q2qvwtESimGGvafbbf7eBpnIkWdtKPXbaxyz5s03TAdnsEbUihKgi6DDH6hlidxerWu0/msIPeseyE753tF30a+8QnVfFJp7hSn/SqT66jvk98UhXvVq/Ee/yVkHtkJaxcd4u8YC6WSKpkghUseOv0Il/FF8zVtYj+sT9RwMXd4sQ9JViS2aoYw9eQ665mIYROUTT7V9HAdX8rF45QUU2uQ6Wuk+3WlYyim1Jck7LlNnXe6jfyQyDUfB9eaaHyn+J7uJUPL/vaPLg7wMt9Ze4DvD3Ey8PtipTZWz3xOnaLbsPFDzIcwvfrOFLHMIeKxmHzggloLA+ccyYifHseZqoD/9ylbB2qVjiBVp6KqoA+XMQZ7JVEvfUCLQGLZnjexNdgPsMzSGPY2KFU39oh8LHxLVWskTWp+vEV3+mrdzelFPU8GXfoyofj0f4BZPESh3L2ReLTSMYhFFZZwHITT8dVoRUYUkNa1aUrT9y74cgvyvPSF8wNoKjC5m/KVphLqHjgf0/vMfQe9/Z6nM6KXF17EE8ZFoNPWV//k5hDvaSuPQg3hsodLz39cPIocrz09LMFlJtSvX0s3zs4Tv5l0Qf/7GmBbyV6en23yP2RbbijbsRdfGk4Cylsr/BtG3i3DcijFRDuenQKFmTowq+f9yGCeAanbw62re/6lD5+9mWR46UPIEXIKFglQxVCx3x+qX5KqPyRUz4ePThww2LVvvphK7dqjfr3rSbYiYWn0eoPAyrti9TnUwnNika3B2lFqbXBl+1Mb4moo92FP3G0W2HIM1hHlY61+a1G/Sa6Oi7saIzr/N1ds/kjXPvmhTUyxyPz2/Huo0cD/Xlr8P7gN4M7A3PwYPBo8LvBk8Hzgfv2/27cvHH3xke3/3r777f/cfufGvrmG6XMrwe1z+1//R+6gFM9</latexit> <latexit sha1_base64="N0otbztN+sjGy9xqdVKMRIGUlNA=">AAAoEHicpVrdctvGFVbSn6SK2ybtZW7WVRxbDkgTEGXLySjj5mfSzsSNY8tOWkLSLIAlsUP8ebGQSaHoQ3T6ML3r9LZv0Bfo9B1603N2QRK/lMahxyCw+53vnD179uxZUE4S8FSORv9+480f/fgnP33r7Z/tvnPj57/45bvv/epFGmfCZc/dOIjF9w5NWcAj9lxyGbDvE8Fo6ATsO2f+OfZ/d8FEyuPoRC4TdhrSWcSn3KUSms7fe+dvtsNmPMoln18m3JWZYMXkdJcQG1tSuQxY7sZRxFwUKI4nqR8LySLy6bGZSEP63J0bxBP01bETUHd+88HIIIP800nq0oAdm6eFQaLYY8SDwdDIZcd2FAV0CTaxpKFnmkXdWmAES7JSRVOfJFRKJqLjPI7IQSJJPJ0SK5HFdksa6iKWCaUMZQyXCzdg5YCmPAiOX/lcMiPkEQ+zkKT8UtmOg8H7BtmCrOn0TdUUg2wIG3LSZ5L2yHpUzAdOkLFSfv180xzd7CLzueeB07ZY0vQ4j2jwmpYvSEAdFhTkmEwkW0htnmBet1ENcL81XawzwVjU6bkuNLrodBfQt4gCodw0hmXh+sSOaMjIPWIvCY9IPjKGw6FhFgjBmZ1U5+OU3FGPAyW0T6gkd0aG5YZkAOJuuE/y4hOlZnGlCmujYrGhX9SpB2aDW5E78YKlKI3TMsH4Z55RLod6nADjYDS8b4yG430yGABl88Ea3tcPg/YTAj/p1rMiHhysJDqe1ooGXY+ILQfkm1e6a7xxVy2owRDfrDqtkk0MYg4PCXqQbFxISpXWD1JpVVVad6tKO3RqlUE8E2vG6kIDQuzTZAc1MgK+OqyxpAYRMAkEHzqp5GCkmcZ1JmvtgH5Js1PSvFIy7ZSr2N4vKrpFrepkfa73G714wbONeNGbX2v5rvshP8vWvMKO4U82G9lmaWu2fcK8GdPBhfL7TVsW17DDei07Fte2wTfRCGu43Yrxa1mBShtmWCszGlZYYMUquK8yo0OR1VSkFkNzrNgIesrwV+GkuFY1wnoRaY5UZa7tGHENDK6mMnq3w8ymW1bB2m2rDraRlp84LPJIwKby2ByVS7jbNC1mtsSs0WnNiN9CWSKpZJV1V9keT9WSG6gVB4+w4gjkh6F1qBPWB7bCno8+qC3cxRbhgbmRXtTFqtu9lj0YtvNEmTI3pMoOcDGxfSpzUXzQkUQqnLX8QT6qMq0VKEpkS5HttcmsKtUPM6zcoNZsUrPZMK+1Avz83b3RcKQ+pH1jljd7j8i3//3P228dPjl/733X9mI3C1kk3YCm6cQcJfI0p0JyqGqLXTsDA6DiohBGcIubWXqaq/NDQW5Bi0dgKcP/SBLVWpXIaZimy9ABZAgBmjb7sLGrb5LJ6dFpzqMkg1re1YqmWUBkTPAwAmcCAUsnWMINdQUHW4nrU0FdKO7rWpRNxkIbvLuLyw7uUrA1SuFgAcMmr7iEg0EQS5D0GEwMU+h8VZYWuZg5RT4aHhnoS7yYR6ODh5Z5eP/ovvVgfAj7SFsS66q16Ggteg1JVbTWRasyo4fAofiK3Vtt6VjQaLbSbGrx++MHo8OjI+vg0Ho4Ns2jUvoK4XLE4xLdNXuGl+LUG3gv4zhIaxGTpzyLuFzUG2eCJlAbNlrDLJBcxK8MJ47nkjqpAZcsoGJhTIOYynoootLjKBYhDdSZKk8zZ8pnDe2BLkUdQeesTpBP2TIKkwHNZFxnTuH8+KEbh3AaTiHSIyod7gDkCSyObxJMr+lJ/KRk8ZeJz6K0yDMRFFWWxJvCscKAnIYn7Hlq4FX5+bgSHQZx4XhUbdZTbxDgqzZjFCrHhPCUxgmLFKGM3WMaBKdoBxOCTetjZFEWAn8I60ctUugSAz3lHgHfBkzWFwt4vOGOnLourJF0RWH7kH7qMpB+6iKLFO4YSqibFPd2cGhII0+rQ5GAw6yIJSQamHPYrD1wg1DvFtIhDpJHM2jVvcMQdhm1eL9iEROQNzEJAI8E1K4dsVclfW5jDGJsFBPzFJ7gZJe6+Z5ZFHUY3CeQLlQkFjnsngKycgLGO1CVzG2Hz9I5T2ptUcwj2J9kgwnik1/gXGiNPkxC7kuZfHzvnuoaxmJ2D6L5HhihDZISBv09v/gYzWqw4Q1bWQ9umEEKpCK30+mUhjxY2ilku0RiyCuuZqLSlBVHYfaFVUnqanhYIL30RZjzpg0en0433V6zm82KPGdD25gNi780+jhkjpxDH2v3sZcZv6ABjg7Gw0P2Uhn6R4iPKCYhXTqsLrBkCSBhdcHGhsagd5opEgpF12euWhYtZ0IMefG0n0MnaKCgqWwJw9SzflHlbPVSAbbD0uXPVLDXWV6+fJlRgNrqm+ivooVZg1aoHtgGtwZqJKh/4i9T7qarGa8LwwBWMSV9lwb54+JcBVDH2sCB17DfFOcdsGAm6rCvt1AKr0lpYzl6Z8+0BZ/5cr8h4IhNBH72tEkXJhBD9bnBqzPNk+L85EwvszzkKU5NS5g1hb+8Uga2q/Rlob7PbI/OZgwyITw0YFCjQLg9Oy/J8EmHxnPYBBszwi7UMsjZi1bYrrrm7b5w1fe43Tdb9X3V7pOrvpN239TRXfDdXM6brrN80M5WSdmdtCU3XStJcMMXUHAJ7mQqy5PmesO9vJhYlSj5Q2HfhH9lpBA7hBNCwP5M9iyyDhukZQIyi+QXkEqAS+01GRxqYtHweeIxoTVMoVQkKu9LDlkSIrb6ZLXc1xTEHFlK6du2SKfMmVWVykHsrCU5bQmyAA5kpZy+t7RDP4sDr3vBQ4unDmf1WCeqQ0vk+vTWmlVERFnRLwadHSIsSXkQR1vkLqhYgTrkFw3JckUvurCX3djLLuyyG7vswl50Yy+6sLIbKzvtZSLuho/0RD5m0o+9xhy6FIrKdRHzOT7ZZW1VB4o4EBvgU3zqBqZQLC43yGfqsR/Ko7gOxoZuuEvxx5Kqteq5x94G+GkDrDZT5uKvTSSGIBXdMa7CF4ve8naVd7GplZAiiadD6gSNqoLknYVUso1BXIdBbGNIr8OQbmOQ12FolzUVhsvrMPypxRDEMFdhDInoWn5cTYoS01srTO/vI8mg+G7OKFiHaQC+iH2T6CS5sD9pj2GRCKi8WtDbnVjewp3zTuC8DZx3Aae0babOYYhuwS+b2Mse0hZQJ49OW1vYBbGNKn9LBIopxpp2nx10O3gaZ6KFHfdjl23ssg/bNB2w3R5BG1KoCoIuQ4y+IVZnsbr1HpA57KB3LDvh+2cHRZ/GPvFxVXzcKa7UJ73qk+uo7xMfV8W71SvxHn8l5B5ZCSvX3SIvmIslkiqZYAUL3jq9yFfxBXN1LaJ/7E8UcHG3mLinBEsyWxVj+Bpy3dUshNApiubgKhq4HmzlwhEqqvF1qNR1vN26klF0U4prUrbcps5b/UZ+CISa78MrLVT+U3wPt/Lh5UCbB3eHeLmvzH2At0d4ebhdkTJ7qydex27Rbbj4QYZD+H4dR+oY5lDROGxeMAGN5YFzzkSEb8/DTHXgn7uUrQPVCifQylNRFdCHiziDvZKot16gJWDRDM+b+BrMZ3gGaQwbO5TqW7sEPja+pYo1siZVP77iO3317qaUop4n4w5d+WA0PDiELF7iUM6+SHwayTiEwioLWG7i6bgqtAJDakirunTliXs3HPlFeV76grkBFFXY/E3ZCnMJFQ/87+k9gd6T3l6P01mRq2sP4inDYvAp6+t/EnOol9S1B+HGULnjpacfTh5FjpeefraAclOqt4/lewfHyb8s+uCfPS3wrURPr+8WuT+0DXfYjbiLLw1nIYXtFb5tA++2AXm0AsJdj07Bggxd+PXzPkQQz+D0zcG29V2f0sfPvixyvPQBpAgZBatkqELohM8v1U8JlT9yykfDB4duWKzaVz9s5VatUf++1QQ7sfA0Wv1hQKV9kfp8KqFZ0ej2IK0otTb4sp3pLRF1tLvwJ452Kwx5Buuo0rE2v9Wo30RXx4UdjXGdv7tnNn+Ea9+8sIbmaGh+O9p79GhHf97eeX/nNzt3dsydBzuPdn6382Tn+Y77zv9u3Lxx98ZHt/96+++3/3H7nxr65hulzK93ap/b//o/y+dThw==</latexit> <latexit sha1_base64="N0otbztN+sjGy9xqdVKMRIGUlNA=">AAAoEHicpVrdctvGFVbSn6SK2ybtZW7WVRxbDkgTEGXLySjj5mfSzsSNY8tOWkLSLIAlsUP8ebGQSaHoQ3T6ML3r9LZv0Bfo9B1603N2QRK/lMahxyCw+53vnD179uxZUE4S8FSORv9+480f/fgnP33r7Z/tvnPj57/45bvv/epFGmfCZc/dOIjF9w5NWcAj9lxyGbDvE8Fo6ATsO2f+OfZ/d8FEyuPoRC4TdhrSWcSn3KUSms7fe+dvtsNmPMoln18m3JWZYMXkdJcQG1tSuQxY7sZRxFwUKI4nqR8LySLy6bGZSEP63J0bxBP01bETUHd+88HIIIP800nq0oAdm6eFQaLYY8SDwdDIZcd2FAV0CTaxpKFnmkXdWmAES7JSRVOfJFRKJqLjPI7IQSJJPJ0SK5HFdksa6iKWCaUMZQyXCzdg5YCmPAiOX/lcMiPkEQ+zkKT8UtmOg8H7BtmCrOn0TdUUg2wIG3LSZ5L2yHpUzAdOkLFSfv180xzd7CLzueeB07ZY0vQ4j2jwmpYvSEAdFhTkmEwkW0htnmBet1ENcL81XawzwVjU6bkuNLrodBfQt4gCodw0hmXh+sSOaMjIPWIvCY9IPjKGw6FhFgjBmZ1U5+OU3FGPAyW0T6gkd0aG5YZkAOJuuE/y4hOlZnGlCmujYrGhX9SpB2aDW5E78YKlKI3TMsH4Z55RLod6nADjYDS8b4yG430yGABl88Ea3tcPg/YTAj/p1rMiHhysJDqe1ooGXY+ILQfkm1e6a7xxVy2owRDfrDqtkk0MYg4PCXqQbFxISpXWD1JpVVVad6tKO3RqlUE8E2vG6kIDQuzTZAc1MgK+OqyxpAYRMAkEHzqp5GCkmcZ1JmvtgH5Js1PSvFIy7ZSr2N4vKrpFrepkfa73G714wbONeNGbX2v5rvshP8vWvMKO4U82G9lmaWu2fcK8GdPBhfL7TVsW17DDei07Fte2wTfRCGu43Yrxa1mBShtmWCszGlZYYMUquK8yo0OR1VSkFkNzrNgIesrwV+GkuFY1wnoRaY5UZa7tGHENDK6mMnq3w8ymW1bB2m2rDraRlp84LPJIwKby2ByVS7jbNC1mtsSs0WnNiN9CWSKpZJV1V9keT9WSG6gVB4+w4gjkh6F1qBPWB7bCno8+qC3cxRbhgbmRXtTFqtu9lj0YtvNEmTI3pMoOcDGxfSpzUXzQkUQqnLX8QT6qMq0VKEpkS5HttcmsKtUPM6zcoNZsUrPZMK+1Avz83b3RcKQ+pH1jljd7j8i3//3P228dPjl/733X9mI3C1kk3YCm6cQcJfI0p0JyqGqLXTsDA6DiohBGcIubWXqaq/NDQW5Bi0dgKcP/SBLVWpXIaZimy9ABZAgBmjb7sLGrb5LJ6dFpzqMkg1re1YqmWUBkTPAwAmcCAUsnWMINdQUHW4nrU0FdKO7rWpRNxkIbvLuLyw7uUrA1SuFgAcMmr7iEg0EQS5D0GEwMU+h8VZYWuZg5RT4aHhnoS7yYR6ODh5Z5eP/ovvVgfAj7SFsS66q16Ggteg1JVbTWRasyo4fAofiK3Vtt6VjQaLbSbGrx++MHo8OjI+vg0Ho4Ns2jUvoK4XLE4xLdNXuGl+LUG3gv4zhIaxGTpzyLuFzUG2eCJlAbNlrDLJBcxK8MJ47nkjqpAZcsoGJhTIOYynoootLjKBYhDdSZKk8zZ8pnDe2BLkUdQeesTpBP2TIKkwHNZFxnTuH8+KEbh3AaTiHSIyod7gDkCSyObxJMr+lJ/KRk8ZeJz6K0yDMRFFWWxJvCscKAnIYn7Hlq4FX5+bgSHQZx4XhUbdZTbxDgqzZjFCrHhPCUxgmLFKGM3WMaBKdoBxOCTetjZFEWAn8I60ctUugSAz3lHgHfBkzWFwt4vOGOnLourJF0RWH7kH7qMpB+6iKLFO4YSqibFPd2cGhII0+rQ5GAw6yIJSQamHPYrD1wg1DvFtIhDpJHM2jVvcMQdhm1eL9iEROQNzEJAI8E1K4dsVclfW5jDGJsFBPzFJ7gZJe6+Z5ZFHUY3CeQLlQkFjnsngKycgLGO1CVzG2Hz9I5T2ptUcwj2J9kgwnik1/gXGiNPkxC7kuZfHzvnuoaxmJ2D6L5HhihDZISBv09v/gYzWqw4Q1bWQ9umEEKpCK30+mUhjxY2ilku0RiyCuuZqLSlBVHYfaFVUnqanhYIL30RZjzpg0en0433V6zm82KPGdD25gNi780+jhkjpxDH2v3sZcZv6ABjg7Gw0P2Uhn6R4iPKCYhXTqsLrBkCSBhdcHGhsagd5opEgpF12euWhYtZ0IMefG0n0MnaKCgqWwJw9SzflHlbPVSAbbD0uXPVLDXWV6+fJlRgNrqm+ivooVZg1aoHtgGtwZqJKh/4i9T7qarGa8LwwBWMSV9lwb54+JcBVDH2sCB17DfFOcdsGAm6rCvt1AKr0lpYzl6Z8+0BZ/5cr8h4IhNBH72tEkXJhBD9bnBqzPNk+L85EwvszzkKU5NS5g1hb+8Uga2q/Rlob7PbI/OZgwyITw0YFCjQLg9Oy/J8EmHxnPYBBszwi7UMsjZi1bYrrrm7b5w1fe43Tdb9X3V7pOrvpN239TRXfDdXM6brrN80M5WSdmdtCU3XStJcMMXUHAJ7mQqy5PmesO9vJhYlSj5Q2HfhH9lpBA7hBNCwP5M9iyyDhukZQIyi+QXkEqAS+01GRxqYtHweeIxoTVMoVQkKu9LDlkSIrb6ZLXc1xTEHFlK6du2SKfMmVWVykHsrCU5bQmyAA5kpZy+t7RDP4sDr3vBQ4unDmf1WCeqQ0vk+vTWmlVERFnRLwadHSIsSXkQR1vkLqhYgTrkFw3JckUvurCX3djLLuyyG7vswl50Yy+6sLIbKzvtZSLuho/0RD5m0o+9xhy6FIrKdRHzOT7ZZW1VB4o4EBvgU3zqBqZQLC43yGfqsR/Ko7gOxoZuuEvxx5Kqteq5x94G+GkDrDZT5uKvTSSGIBXdMa7CF4ve8naVd7GplZAiiadD6gSNqoLknYVUso1BXIdBbGNIr8OQbmOQ12FolzUVhsvrMPypxRDEMFdhDInoWn5cTYoS01srTO/vI8mg+G7OKFiHaQC+iH2T6CS5sD9pj2GRCKi8WtDbnVjewp3zTuC8DZx3Aae0babOYYhuwS+b2Mse0hZQJ49OW1vYBbGNKn9LBIopxpp2nx10O3gaZ6KFHfdjl23ssg/bNB2w3R5BG1KoCoIuQ4y+IVZnsbr1HpA57KB3LDvh+2cHRZ/GPvFxVXzcKa7UJ73qk+uo7xMfV8W71SvxHn8l5B5ZCSvX3SIvmIslkiqZYAUL3jq9yFfxBXN1LaJ/7E8UcHG3mLinBEsyWxVj+Bpy3dUshNApiubgKhq4HmzlwhEqqvF1qNR1vN26klF0U4prUrbcps5b/UZ+CISa78MrLVT+U3wPt/Lh5UCbB3eHeLmvzH2At0d4ebhdkTJ7qydex27Rbbj4QYZD+H4dR+oY5lDROGxeMAGN5YFzzkSEb8/DTHXgn7uUrQPVCifQylNRFdCHiziDvZKot16gJWDRDM+b+BrMZ3gGaQwbO5TqW7sEPja+pYo1siZVP77iO3317qaUop4n4w5d+WA0PDiELF7iUM6+SHwayTiEwioLWG7i6bgqtAJDakirunTliXs3HPlFeV76grkBFFXY/E3ZCnMJFQ/87+k9gd6T3l6P01mRq2sP4inDYvAp6+t/EnOol9S1B+HGULnjpacfTh5FjpeefraAclOqt4/lewfHyb8s+uCfPS3wrURPr+8WuT+0DXfYjbiLLw1nIYXtFb5tA++2AXm0AsJdj07Bggxd+PXzPkQQz+D0zcG29V2f0sfPvixyvPQBpAgZBatkqELohM8v1U8JlT9yykfDB4duWKzaVz9s5VatUf++1QQ7sfA0Wv1hQKV9kfp8KqFZ0ej2IK0otTb4sp3pLRF1tLvwJ452Kwx5Buuo0rE2v9Wo30RXx4UdjXGdv7tnNn+Ea9+8sIbmaGh+O9p79GhHf97eeX/nNzt3dsydBzuPdn6382Tn+Y77zv9u3Lxx98ZHt/96+++3/3H7nxr65hulzK93ap/b//o/y+dThw==</latexit> <latexit sha1_base64="KGKYmyKWjUVupNzZY8DVUShrvqU=">AAAoEHicpVrbctzGEaWdm0MriZ08+mUUWtbF2NUCXEqUXXQ5vpSTKitSJEp2QpCsATC7mFrcNBhQu0SQj0jlY/KWymv+IN+Sl3TPALu4LlnyqoQFZk6f7unp6enB0kkCnsrJ5L9vvf2jH//kpz975+e77974xS9/9d77v36Zxplw2Qs3DmLxvUNTFvCIvZBcBuz7RDAaOgH7zll8if3fXTCR8jg6lquEnYZ0HvEZd6mEpvP33/2H7bA5j3LJF5cJd2UmWHFyukuIjS2pXAUsd+MoYi4KFEcnqR8LySLy2ZGZSEP63F0YxBP09ZETUHdx8+HEIKP8s5PUpQE7Mk8Lg0Sxx4gHg6GRy47sKAroCmxiSUvPLIv6tcAIVqRSRVOfJFRKJqKjPI7IfiJJPJsRK5HFdkta6iKWCaUMZQyXCzdg5YBmPAiOXvtcMiPkEQ+zkKT8UtmOg8H7FtmSrOn0Td0Ug2wIW3LSZ5IOyHpULEZOkLFSfv1805zc7CPzueeB07ZY0vY4j2jwhpYvSUAdFhTkiJxItpTaPMG8fqNa4GFr+ljngrGo13N9aHTR6S6gbxEFQrlZDMvC9Ykd0ZCR+8ReER6RfGKMx2PDLBCCM3tSn49Tckc9jpTQXUIluTMxLDckIxB3w7skLz5VapZXqrA2KpYb+mWTemS2uBW5Ey9ZitI4LScY/8wzyuXQjBNgHE3GD4zJeHqXjEZA2X6wxg/0w6j7hMBP+/VUxKP9SqLnaa1o1PeI2HJAvnmlu6YbdzWCGgzxzbrTatnEIOb4gKAHycaFpFRp/SCVVl2lda+utEenVhnEc7FmrC80IMQ+TbbfICPgq4MGS2oQAZNA8KGXSo4mmmnaZLLWDhiWNHslzSsl0165mu3DoqJf1KpP1pd6v9GLFzzbihe9+XWW77of8rPszCvsGP7JZiPbLG3Ndpcwb850cKH83bYty2vYYb2RHctr2+CbaIQ13m7F9I2sQKUtM6zKjJYVFlhRBfdVZvQostqK1GJojxUbQU8Z/iqcFFdVI6wXkeZIVebajhHXwOBqKqN3O8xsu6UK1n5bdbBNtPyJwyKPBGwmj8xJuYT7TdNiZkfMmpw2jPgdlCWSSlZbd7Xt8VQtuZFacfAIK45AfhhbBzphfWgr7Pnkw8bCXW4RHpkb6WVTrL7da9n9cTdPlClzQ6rsABcT26cyF8WHPUmkxtnIH+TjOtNagaJEthTZ3pjMqlP9MMPKDWrNJjWbDfPaKMDP39ubjCfqQ7o3Znmzt1N+np6//4Fre7GbhSySbkDT9MScJPI0p0JyqGqLXTsDA6DiohBGcIubWXqaq/NDQW5Bi0dgKcP/SBLVWpfIaZimq9ABZAgBmrb7sLGv7ySTs8PTnEdJBrW8qxXNsoDImOBhBM4EApZOsIIb6goOthLXp4K6UNw3tSibjKU2eHcXlx3cpWBrlMLBAoZNXnMJB4MgliDpMZgYptB5VZYWuZg7RT4ZHxroS7yYh5P9R5Z58ODwgfVwegD7SFcS66q16GQteg1JVbQ2Resyk0fAofiK3Vtd6VjQaF5pNrX4g+nDycHhobV/YD2amuZhKX2FcDniaYnumz3DS3HqDbyXcRykjYjJU55FXC6bjXNBE6gNW61hFkgu4teGE8cLSZ3UgEsWULE0ZkFMZTMUUelRFIuQBupMlaeZM+PzlvZAl6KOoAvWJMhnbBWFyYhmMm4yp3B+/MiNQzgNpxDpEZUOdwDyFBbHkwTTa3ocPy1Z/FXisygt8kwERZ0l8WZwrDAgp+EJe5EaeFV+PqpFh0FcOB7Vm/XUGwT46s0YhcoxITylccIiRShj94gGwSnawYRgs+YYWZSFwB/C+lGLFLrESE+5R8C3AZPNxQIeb7kjp64LayStKGwf0k9TBtJPU2SZwh1DCXWT4t4ODg1p5Gl1KBJwmBWxgkQDcw6btQduEOrdQjrGQfJoDq26dxzCLqMW7zcsYgLyJiYB4JGA2rUj9rqkz22MQYyN4sQ8hSc42aVuvmcWRRMG9wmkCxWJRQ67p4CsnIDxDlQlC9vh83TBk0ZbFPMI9ifZYoL45Bc4F1qjD5OQ+1Imn9y/r7rGsZjfh2i+D0Zog6SEQX/PLz5Bs1pseMMq68ENc0iBVOR2OpvRkAcrO4Vsl0gMecXVTlSasuYozL6wKklTDQ8LpJe+CHPetsHjs9mm22t3s3mR52xsG/Nx8bdWH4fMkXPoY90+9irjFzTA0cF4eMheKUP/DPERxSSkK4c1BVYsASSsLtjY0Bj0TjtFQqHo+sxVy6LjTIghL54Nc+gEDRQ0lR1hmHo2LKqcrV4qwHZYuvy5CvYmy6tXrzIKUFt9E/1VdDBrUIUagG1wa6BGgvqn/irlblrNeFMYBlDFlPRdGuSPi3MVQD1rAwfewD4pzntgwVw0Yd9uoRRem9LGcvTOnmkLPvfl3ZaAIzYR+MWzNl2YQAw15wavzixPivPjM73M8pCnODUdYdYW/vpKGdiu0leF+j6zPTqfM8iE8NCCQY0C4fb8vCTDJx0aL2ATbM0Iu1DLIGcvO2FbdS26fWHV97jbN6/6vun2yarvuNs3c3QXfLeX86brLB91s1VSdiddyU1XJQlu+AoKLsGdTGV50l5vuJcXJ1YtSv5Y2DfhXxkpxA7hhBCwv5I9i6zDBmmZgMwi+QWkEuBSe00Gh5pYtHyeeExoDTMoFYnK+5JDloSIrT9ZHfe1BTFHllL6tivSK3Nm1aVyEDvrSM46giyAA1kpp+8t7dAv4sDrX/DQ4qnDWTPWierQErk+vXVmFRFRVgyLQWePCEtSHsTRFrkLKipQj/yyJVmu6GUf9rIfe9mHXfVjV33Yi37sRR9W9mNlr71MxP3wiZ7Ix0z6sdeaQ5dCUbkuYr7EJ7usrZpAEQdiA3yGT/3AFIrF1Qb5XD0OQ3kUN8HY0A93Kf5YUrdWPQ/Y2wI/a4HVZspc/LWJxBCkoj/GVfhi0VveVnkXmzoJKZJ4OqRO0KoqSN5bSCXbGMR1GMQ2hvQ6DOk2Bnkdhm5ZU2O4vA7DXzoMQQxzFcaQiK7lx2pSlJjeWmF6/xBJBsV3e0bBOkwD8EXsm0QnyaX9aXcMy0RA5dWB3u7F8g7unPcCF13gog84o10zdQ5DdAd+2cZeDpB2gDp59NrawS6JbdT5OyJQTDHWtvtsv9/BszgTHex0GLvqYldD2LbpgO33CNqQQlUQ9BliDA2xPov1rXefLGAHvWPZCb97tl8MaRwSn9bFp73iSn0yqD65jvoh8WldvF+9Eh/wV0Luk0pYue4WeclcLJFUyQQrWPDO6UW+ji+Yq2sR/WN/ooDLe8WJe0qwJLNVMYavIddd7UIInaJo9q+igev+Vi4coaKaXodKXafbrSsZRT+luCZlx23qvDVs5EdAqPk+utJC5T/F92grH172tXlwd4CXB8rch3h7iJdH2xUps7d64k3sFv2Gix9kOITvt3GkjmEOFa3D5gUT0FgeOBdMRPj2PMxUB/65S9k6Uq1wAq09FXUBfbiIM9griXrrBVoCFs3xvImvwXyGZ5DWsLFDqb61S+Bj41uqWCMbUs3jK77TV+9uSinqeTLu0ZWPJuP9A8jiJQ7l7IvEp5GMQyissoDlJp6O60IVGFJDWtelK0/cu+HIL8rz0lfMDaCowuYnZSvMJVQ88H+g9xh6jwd7PU7nRa6uA4hnDIvBZ2yo/2nMoV5S1wGEG0PljpeBfjh5FDleBvrZEspNqd4+lu8dHCf/uhiCf/GswLcSA72+W+T+2DbccT/iHr40nIcUtlf4tg282wbkUQWEuwGdggUZuvDbF0OIIJ7D6ZuDbeu7IaWPn39d5HgZAkgRMgpWyVCF0DFfXKqfEmp/5JRPxg8P3LCo2qsftnKr0ah/32qDnVh4Gq3+MKDWvkx9PpPQrGh0e5DWlFobfNnO9JaIOrpd+BNHtxWGPId1VOtYm99p1G+i6+PCjta4zt/bM9s/wnVvXlpjczI2/zTZ+/zz8ge6d3Y+2Pntzp0dc+fhzuc7v995uvNix333fzdu3rh34+Pbf7/9z9v/uv1vDX37rVLmNzuNz+3//B+t8VDE</latexit> r(x, z|✓) <latexit sha1_base64="n4ECwTYdCfuLwJXCZl6+ybiKm1E=">AAAcoXicpVltb9y4Ed67vl3dt1z7pcD5A6+G0+Sw3uyu7cS5IkCQu+B6QNK4jpNLa9kGJY0kYiVRJqnN7urUX9Bf06/tHynQH9MhpbX1ujHaNaylOM8zHA6Ho6HWTkIm1Xj8748+/sEPf/Tjn3zy062f/fwXv/zVnU9//VbyVDjwxuEhF+9sKiFkMbxRTIXwLhFAIzuE7+zZV1r+3RyEZDw+VcsEziPqx8xjDlXYdXnnrqVgoYyezKVitifAzTNxbzEkK/I9sVQAit7PL+/sjEdj8yHtxqRs7Dz97eo/A/wcX376mWO53EkjiJUTUinPJuNEnWdUKOaEkG9ZqYSEOjPqwxk2YxqBPM+MITnZxR6XeFzgf6yI6a0yMhpJuYxsREZUBbIp051dsrNUeUfnGYuTVEHsFAN5aUgUJ9o7xGUCHBUusUEdwdBW4gRUUEehD2ujGJuGi8Lgra1dYnwt0dZY4rLhtMl7pgKShFwh0wUPV6jlZ9/Os/HoaKh9qS+To/H+4+nk8OHRw+mjg8NJ3sG0wxSuqeNr6i2YvgCI69QqZ/wYdRh9+dZum80Fjf31yJOC/vDg0fjw6Gi6fzh9fDCZHJXsD5DLGR+U6K7VG7pSL/1QtxXnoaxFTCZZGjO1qHf6giYBcxq9URoqJvj7oc35TFFbDvGShlQshl7IqaqHoh70ScxFREPJVnCeydT2mN8YHQM6AHdoCzqDuoLMg2UcJXs0VbyuWXKh7jo8wu0pMdJjqmxmI+QYN8erRO9GecqPSy3BMgkglnmWijCvaklcDzfsMGCu3vIzOdRX4+cnlegYEocpqHYXSz8kqK/araPQOCbCO8kTiI1CxZ0nNAzPtR0gBHj1OUKcRqg/wv1jNimKxF6x5C5B34ag6psFPd5wR0YdB/eIXKuwgoCqOofNVnXKQmILNMM0JGExbrcoorFbDKcpIcNVEUtMNLjmckhcdIMwyU6O9CRZ7GNvIR1FmNzM5v0GYhA0NEkA9ShEbVkxvC/VZ5aOQR0b+dnkPDM5UzrZziTP6zBsJ5guTCTmmYVtK+YJGm9jUp5ZNvPljCW1vpiz2EVXNDRhfLK5XotixAAXIQuUSr588MCIRlz4DzCaH6ARhUFK4aTfsfmX2qyGNt2AtfXoBh9TIBWZJT2PRixcWhKzXaJ0yHc+EAqVFUfp7Iu7ktSHYVGu1atARBlr2uAyz7sRu00x+HmWwcga+qP8bw0Zw8yRMZRBWwZXKZvTUM8O58MiuDKG/gXjI+Ykoksb6oQlJIjE3ZUK0MZo7zRTJCGWE4BjtkXLmRhDLvf6dRQJGlVQqVpkXHropxpnI1PhPGTp8tcm2Otarq6uUopQy3yT4itvYa5Ba1QP7AZ3DSyQOPxxsJTMkesVr5NxAuuYUoFDw+xlfmkCqGNv6InXsK/yyw5Y6Is67MUGlcJtqrRC8NS9nYklmB+o+w2CLW4i8NlJU12UYAzV10ZfbS9L8svTi2KbZRGTemlaZGiSn3+Qg48reZWb7wvLpb4PmAnxpgHDGgXD7fVlqUzfFaHxBh+CjRWBudkGGbxthe1aNGvLorXsZVvmr2XftGVqLTttyzy7EOF3czvfiC6yvXa2Skpx0mbeiNZMdMPXWHAJZqcmy5PmftPP8vxsWomSP+XW5/hXRgqxIua6IXxPdqbkOmy0WhCYWRSbYypBXeZZkyqquGj4PHFBFCN4WCoSk/cVwyyJEVu9m7bc1yTqHFmyimab0sm5mFZZGdIuWkyvRYRQ0TWvaE8Lhz7jodu94bHHNWeCeqwTIygYWXFoaK2qRsRp3k9DYQcFEslCHm/gzalYgzr4iwaz3NGLLuyqG7vqwi67scsu7LwbO+/Cqm6s6rQXBO+Gj4uFfAkq4G5jDR2KReV1EfOVvrPK2qoOFDwUN8ATfdcNlFgsLm+Qr81tP5TFvA7WHd1wh0rcsVVrzX2PvQ3wSQNsHqbg6OMv4RikojvGTfjqordsrvOu7molpFjp0yHF83a9qiBZZyGVbNIgbqNBbNIgb6NBbtKgbqOhXdZUNKxuo+GvLQ0hx7WKOCaiW/lxvSiGVjxacXm/jRVg8d1cUbROpwH8ItbnpEiSC+sP7TksEoGVVwv6+04sa+EuWSdw1gbOuoAebZtZ5DCNbsFXTeyqR2kLWCSPTltb2AWxhlX9LQoWUwBNuy/2ux3s8VS0sAf92GUbu+zDNk1HbLdHtA0Sq4Kwy5Bh3xSrq1h99O6TGT5B702thN2/2M/7RuyjH1TpB510M3zSO3xym+H76AdVevfwht7jr4Q8IGuycd0ueQuOLpFMyYQ7WLDW6UW953NwilrEBjyLZokBLr7Iz5xzoksyyxRjgOhrUbMQ0k4xavY/pAav+xt16RkaVQe3UWWuB5utKzWKbpXilipbbjPnrX4j76LCQt/dD1po/Gf0Pd6oT1/2C/OwdagvD425j3TzSF8ebx7ImL3RE/+L3aLbcPF/GY7h+4LH5hhmU9E4bM5BYGd54JyBiMlkdBilRqDfv5e9e6YXT6CVu7xKKA4XPMVnJTFvvXCUEGJfnzf1a7AA9BmkMW0tMEPvbhH8WPotFS+QNVb9+Ir9xbubkkVdV/GOsbK98Wj/ELN4idM8a54ENFY8wsIqDSGb6NNxlbQGY2qQ1bGKylM/u/HIL8rz0tfghFhU6e5XZS+uJVY8+N8jPUXpaa/UZdTPM3PtQZyALgZPoE9+zBnWS+bag3A4Vu760iPHk0ee6UuPHBZYbirz9rF872Db2fO8D/7sJNdvJXqkgZNnwcgaOqNuxBf6paEfUXy84rc11K1NQBavgdjqGVNAmGoXvnjThwi5j6dvhrZdt/oGffn6eZ7pSx9AiQgoWqUiE0KnbLYyPyVYcRxjYajfTmbj0aNDJ8rX/SFdgpCQZNNapw2h7myAbS7cAj0e1fsXMmCewm6jpugPZWXQ6Q2+7IfikajHaIv0TxztXpyyj/uoIrg2v9VZvImuzksLGvO6vLMzaf4I1268nY4m49Hkz+Odp0eD4vPJ4LPB7wb3BpPBo8HTwR8Hx4M3A2fw98E/Bv8c/Gt7Z/vb7ePtkwL68Ucl5zeD2mf77L/dBa+v</latexit> <latexit sha1_base64="yfNfOs7ZyWqkNT8RpYmkj2bn/mA=">AAAcoXicpVltb9zGEb6kb4n65rRfCsQfNhXs2sHpfHeSLCmFAcOJkQawa0WWHLeiJCzJIbk4kkvtLs93Ylj0B/TX5Gv7Rwr0x3R2yZP4ehbaE8Rb7jzP7Ozs7HCWZychk2o8/vcHH/7oxz/56c8++njj57/45a9+feeT37yRPBUOnDg85OKtTSWELIYTxVQIbxMBNLJD+M6efanl381BSMbjY7VM4Cyifsw85lCFXRd37lsKFsroyVwqZlsC3DwTDxZDckW+J5YKQNGH+cWdzfFobD6k3ZiUjc2nv7v6z8d//+HZ4cUnnzqWy500glg5IZXydDJO1FlGhWJOCPmGlUpIqDOjPpxiM6YRyLPMGJKTe9jjEo8L/I8VMb1VRkYjKZeRjciIqkA2ZbqzS3aaKm//LGNxkiqInWIgLw2J4kR7h7hMgKPCJTaoIxjaSpyACuoo9GFtFGPTcFEYvLFxjxhfS7Q1lrhsOG3yjqmAJCFXyHTBwxVq+dm382w82h9qX+rLZH+8fTCd7D7efzzd29md5B1MO0zhmjq+pt6C6QuAuE6tcsYHqMPoyzfutdlc0NhfjTwp6I939sa7+/vT7d3pwc5ksl+y30MuZ7xTortWb+hKvfRD3Vach7IWMZlkaczUot7pC5oEzGn0RmmomODvhjbnM0VtOcRLGlKxGHohp6oeinrQJzEXEQ0lu4KzTKa2x/zG6BjQAbhDW9AZ1BVkHizjKNmiqeJ1zZILdd/hEW5PiZEeU2UzGyGHuDleJXo3ymN+WGoJlkkAscyzVIR5VUvierhhhwFz9ZafyaG+Gj8/qUTHkDhMQbW7WPohQX3Vbh2FxjER3kmeQGwUKu48oWF4pu0AIcCrzxHiNEL9Ee4fs0lRJLaKJXcJ+jYEVd8s6PGGOzLqOLhH5EqFFQRU1TlsdlWnLCS2QDNMQxIW43aLIhq7xXCaEjJcFbHERINrLofERTcIk+zkSE+SxT72FtJRhMnNbN6vIQZBQ5MEUI9C1IYVw7tSfWbpGNSxkZ9OzjKTM6WTbU7yvA7DdoLpwkRinlnYtmKeoPE2JuWZZTNfzlhS64s5i110RUMTxieb67UoRgxwEbJAqeSLR4+MaMSF/wij+REaURikFE76LZt/oc1qaNMNWFmPbvAxBVKRWdLzaMTCpSUx2yVKh3znA6FQWXGUzr64K0l9GBblWr0KRJSxpg0u87wbsdsUg59nGYysoT/K/9aQMcwcGUMZtGVwmbI5DfXscD4sgktj6F8wPmJOIrq0oU5YQoJI3F2pAG2M9k4zRRJiOQE4Zlu0nIkx5HKvX0eRoFEFlapFxqWHfqpxNjIVzkOWLn9tgr2u5fLyMqUItcw3Kb7yFuYatEL1wG5w18ACicMfBkvJHLla8ToZJ7CKKRU4NMxe5hcmgDr2hp54Dfsqv+iAhb6ow16sUSncpkorBE892JxYgvmBetgg2OImAp8dNdVFCcZQfW301fayJL84Pi+2WRYxqZemRYYm+fl7Ofi4kpe5+T63XOr7gJkQbxowrFEw3F5flMr0XREaJ/gQbKwIzM02yOBNK2xXollbFq1kL9syfyX7ui1TK9lxW+bZhQi/m9v5RnSebbWzVVKKkzbzRrRiohu+woJLMDs1WZ4095t+luen00qU/Dm3PsO/MlKIFTHXDeF7sjkl12Gj1YLAzKLYHFMJ6jLPmlRRxUXD54kLohjBw1KRmLyvGGZJjNjq3bTlviZR58iSVTTblE7O+bTKypB23mJ6LSKEiq54RXtaOPQZD93uDY89rjkT1GOdGEHByIpDQ2tVNSJO834aCjsokEgW8ngNb07FCtTBXzSY5Y5edGGvurFXXdhlN3bZhZ13Y+ddWNWNVZ32guDd8HGxkC9BBdxtrKFDsai8LmK+1HdWWVvVgYKH4gZ4pO+6gRKLxeUN8rW57YeymNfBuqMb7lCJO7ZqrbnvsbcBPmqAzcMUHH38JRyDVHTHuAlfXfSWzVXe1V2thBQrfTqkeN6uVxUk6yykknUaxG00iHUa5G00yHUa1G00tMuaioar22j4a0tDyHGtIo6J6FZ+XC2KoRWPVlzeb2IFWHw3VxSt02kAv4j1GSmS5ML6Y3sOi0Rg5dWC/qETy1q4C9YJnLWBsy6gR9tmFjlMo1vwqyb2qkdpC1gkj05bW9gFsYZV/S0KFlMATbvPt7sd7PFUtLA7/dhlG7vswzZNR2y3R7QNEquCsMuQYd8Uq6tYffRukxk+QR9MrYQ9PN/O+0bso+9U6TuddDN80jt8cpvh++g7VXr38Ibe46+EPCIrsnHdPfIGHF0imZIJd7BgrdOLesfn4BS1iA14Fs0SA1x8np86Z0SXZJYpxgDR16JmIaSdYtRsv08NXrfX6tIzNKp2bqPKXHfWW1dqFN0qxS1Vttxmzlv9Rt5HhYW++++10PjP6DtYq09ftgvzsLWrL4+NuXu6ua8vB+sHMmav9cT/YrfoNlz8X4Zj+L7gsTmG2VQ0DptzENhZHjhnIGIyGe1GqRHo9+9l75bpxRNo5S6vEorDBU/xWUnMWy8cJYTY1+dN/RosAH0GaUxbC8zQ9zYIfiz9looXyBqrfnzF/uLdTcmirqt4x1jZ1ni0vYtZvMRpnjVPAhorHmFhlYaQTfTpuEpagTE1yOpYReWpn9145BfleekrcEIsqnT3q7IX1xIrHvzvkR6j9LhX6jLq55m59iCOQBeDR9AnP+QM6yVz7UE4HCt3femR48kjz/SlRw4LLDeVeftYvnew7ex53gd/dpTrtxI90sDJs2BkDZ1RN+Jz/dLQjyg+XvHbGurWOiCLV0Bs9YwpIEy1C1+c9CFC7uPpm6Ft162+QV++fp5n+tIHUCICilapyITQMZtdmZ8SrDiOsTDUbyez8Whv14nyVX9IlyAkJNm01mlDqDsbYJsLt0CPR/X+hQyYp7DbqCn6Q1kZdHqDL/uheCTqMdoi/RNHuxen7OM+qgiuzW91Fm+iq/PSgsa8Lu5sTpo/wrUbb6ajyXg0+Xa8+XR/UHw+Gnw6+P3gwWAy2Bs8HfxpcDg4GTiDfwx+GPxz8K+7m3e/uXt496iAfvhByfntoPa5e/pfaBOxLA==</latexit> <latexit sha1_base64="yfNfOs7ZyWqkNT8RpYmkj2bn/mA=">AAAcoXicpVltb9zGEb6kb4n65rRfCsQfNhXs2sHpfHeSLCmFAcOJkQawa0WWHLeiJCzJIbk4kkvtLs93Ylj0B/TX5Gv7Rwr0x3R2yZP4ehbaE8Rb7jzP7Ozs7HCWZychk2o8/vcHH/7oxz/56c8++njj57/45a9+feeT37yRPBUOnDg85OKtTSWELIYTxVQIbxMBNLJD+M6efanl381BSMbjY7VM4Cyifsw85lCFXRd37lsKFsroyVwqZlsC3DwTDxZDckW+J5YKQNGH+cWdzfFobD6k3ZiUjc2nv7v6z8d//+HZ4cUnnzqWy500glg5IZXydDJO1FlGhWJOCPmGlUpIqDOjPpxiM6YRyLPMGJKTe9jjEo8L/I8VMb1VRkYjKZeRjciIqkA2ZbqzS3aaKm//LGNxkiqInWIgLw2J4kR7h7hMgKPCJTaoIxjaSpyACuoo9GFtFGPTcFEYvLFxjxhfS7Q1lrhsOG3yjqmAJCFXyHTBwxVq+dm382w82h9qX+rLZH+8fTCd7D7efzzd29md5B1MO0zhmjq+pt6C6QuAuE6tcsYHqMPoyzfutdlc0NhfjTwp6I939sa7+/vT7d3pwc5ksl+y30MuZ7xTortWb+hKvfRD3Vach7IWMZlkaczUot7pC5oEzGn0RmmomODvhjbnM0VtOcRLGlKxGHohp6oeinrQJzEXEQ0lu4KzTKa2x/zG6BjQAbhDW9AZ1BVkHizjKNmiqeJ1zZILdd/hEW5PiZEeU2UzGyGHuDleJXo3ymN+WGoJlkkAscyzVIR5VUvierhhhwFz9ZafyaG+Gj8/qUTHkDhMQbW7WPohQX3Vbh2FxjER3kmeQGwUKu48oWF4pu0AIcCrzxHiNEL9Ee4fs0lRJLaKJXcJ+jYEVd8s6PGGOzLqOLhH5EqFFQRU1TlsdlWnLCS2QDNMQxIW43aLIhq7xXCaEjJcFbHERINrLofERTcIk+zkSE+SxT72FtJRhMnNbN6vIQZBQ5MEUI9C1IYVw7tSfWbpGNSxkZ9OzjKTM6WTbU7yvA7DdoLpwkRinlnYtmKeoPE2JuWZZTNfzlhS64s5i110RUMTxieb67UoRgxwEbJAqeSLR4+MaMSF/wij+REaURikFE76LZt/oc1qaNMNWFmPbvAxBVKRWdLzaMTCpSUx2yVKh3znA6FQWXGUzr64K0l9GBblWr0KRJSxpg0u87wbsdsUg59nGYysoT/K/9aQMcwcGUMZtGVwmbI5DfXscD4sgktj6F8wPmJOIrq0oU5YQoJI3F2pAG2M9k4zRRJiOQE4Zlu0nIkx5HKvX0eRoFEFlapFxqWHfqpxNjIVzkOWLn9tgr2u5fLyMqUItcw3Kb7yFuYatEL1wG5w18ACicMfBkvJHLla8ToZJ7CKKRU4NMxe5hcmgDr2hp54Dfsqv+iAhb6ow16sUSncpkorBE892JxYgvmBetgg2OImAp8dNdVFCcZQfW301fayJL84Pi+2WRYxqZemRYYm+fl7Ofi4kpe5+T63XOr7gJkQbxowrFEw3F5flMr0XREaJ/gQbKwIzM02yOBNK2xXollbFq1kL9syfyX7ui1TK9lxW+bZhQi/m9v5RnSebbWzVVKKkzbzRrRiohu+woJLMDs1WZ4095t+luen00qU/Dm3PsO/MlKIFTHXDeF7sjkl12Gj1YLAzKLYHFMJ6jLPmlRRxUXD54kLohjBw1KRmLyvGGZJjNjq3bTlviZR58iSVTTblE7O+bTKypB23mJ6LSKEiq54RXtaOPQZD93uDY89rjkT1GOdGEHByIpDQ2tVNSJO834aCjsokEgW8ngNb07FCtTBXzSY5Y5edGGvurFXXdhlN3bZhZ13Y+ddWNWNVZ32guDd8HGxkC9BBdxtrKFDsai8LmK+1HdWWVvVgYKH4gZ4pO+6gRKLxeUN8rW57YeymNfBuqMb7lCJO7ZqrbnvsbcBPmqAzcMUHH38JRyDVHTHuAlfXfSWzVXe1V2thBQrfTqkeN6uVxUk6yykknUaxG00iHUa5G00yHUa1G00tMuaioar22j4a0tDyHGtIo6J6FZ+XC2KoRWPVlzeb2IFWHw3VxSt02kAv4j1GSmS5ML6Y3sOi0Rg5dWC/qETy1q4C9YJnLWBsy6gR9tmFjlMo1vwqyb2qkdpC1gkj05bW9gFsYZV/S0KFlMATbvPt7sd7PFUtLA7/dhlG7vswzZNR2y3R7QNEquCsMuQYd8Uq6tYffRukxk+QR9MrYQ9PN/O+0bso+9U6TuddDN80jt8cpvh++g7VXr38Ibe46+EPCIrsnHdPfIGHF0imZIJd7BgrdOLesfn4BS1iA14Fs0SA1x8np86Z0SXZJYpxgDR16JmIaSdYtRsv08NXrfX6tIzNKp2bqPKXHfWW1dqFN0qxS1Vttxmzlv9Rt5HhYW++++10PjP6DtYq09ftgvzsLWrL4+NuXu6ua8vB+sHMmav9cT/YrfoNlz8X4Zj+L7gsTmG2VQ0DptzENhZHjhnIGIyGe1GqRHo9+9l75bpxRNo5S6vEorDBU/xWUnMWy8cJYTY1+dN/RosAH0GaUxbC8zQ9zYIfiz9looXyBqrfnzF/uLdTcmirqt4x1jZ1ni0vYtZvMRpnjVPAhorHmFhlYaQTfTpuEpagTE1yOpYReWpn9145BfleekrcEIsqnT3q7IX1xIrHvzvkR6j9LhX6jLq55m59iCOQBeDR9AnP+QM6yVz7UE4HCt3femR48kjz/SlRw4LLDeVeftYvnew7ex53gd/dpTrtxI90sDJs2BkDZ1RN+Jz/dLQjyg+XvHbGurWOiCLV0Bs9YwpIEy1C1+c9CFC7uPpm6Ft162+QV++fp5n+tIHUCICilapyITQMZtdmZ8SrDiOsTDUbyez8Whv14nyVX9IlyAkJNm01mlDqDsbYJsLt0CPR/X+hQyYp7DbqCn6Q1kZdHqDL/uheCTqMdoi/RNHuxen7OM+qgiuzW91Fm+iq/PSgsa8Lu5sTpo/wrUbb6ajyXg0+Xa8+XR/UHw+Gnw6+P3gwWAy2Bs8HfxpcDg4GTiDfwx+GPxz8K+7m3e/uXt496iAfvhByfntoPa5e/pfaBOxLA==</latexit> <latexit sha1_base64="kQLQGJ4Xe+WRfsBc6Tu8qUqoqpg=">AAAcoXicpVltc9y2Eb6kb6n65rQfow9INXbtzOl0d5IsKR3PZJx40szYtSpLjltR0oDkksQcSVAAeL4Tw/6C/pp+bf9I/00XIE/i61nTnkY8EPs8i8VisVzw7CRkUo3H//no4x/9+Cc//dknP9/4xS9/9evfPPj0t28lT4UDZw4PuXhnUwkhi+FMMRXCu0QAjewQvrdnX2v593MQkvH4VC0TuIioHzOPOVRh19WDR5aChTJ6MpeK2bYAN8/E48WQ3JAfiKUCUPRJfvVgazwamw9pNyZlY2tQfo6vPv3MsVzupBHEygmplOeTcaIuMioUc0LIN6xUQkKdGfXhHJsxjUBeZMaQnDzEHpd4XOB/rIjprTIyGkm5jGxERlQFsinTnV2y81R5hxcZi5NUQewUA3lpSBQn2jvEZQIcFS6xQR3B0FbiBFRQR6EPa6MYm4aLwuCNjYfE+FqirbHEZcNpk/dMBSQJuUKmCx6uUMvPvp1n49HhUPtSXyaH492j6WT/6eHT6cHe/iTvYNphCrfU8S31HkxfAMR1apUzPkIdRl++8bDN5oLG/mrkSUF/uncw3j88nO7uT4/2JpPDkv0BcjnjvRLdtXpDV+qlH+q24jyUtYjJJEtjphb1Tl/QJGBOozdKQ8UEfz+0OZ8passhXtKQisXQCzlV9VDUgz6LuYhoKNkNXGQytT3mN0bHgA7AHdqCzqCuIPNgGUfJNk0Vr2uWXKhHDo9we0qM9Jgqm9kIOcbN8TrRu1Ge8uNSS7BMAohlnqUizKtaEtfDDTsMmKu3/EwO9dX4+VklOobEYQqq3cXSDwnqq3brKDSOifBO8gRio1Bx5xkNwwttBwgBXn2OEKcR6o9w/5hNiiKxXSy5S9C3Iaj6ZkGPN9yRUcfBPSJXKqwgoKrOYbObOmUhsQWaYRqSsBi3WxTR2C2G05SQ4aqIJSYaXHM5JC66QZhkJ0d6kiz2sbeQjiJMbmbzfgsxCBqaJIB6FKI2rBjel+ozS8egjo38fHKRmZwpnWxrkud1GLYTTBcmEvPMwrYV8wSNtzEpzyyb+XLGklpfzFnsoisamjA+2VyvRTFigIuQBUolX+7sGNGIC38Ho3kHjSgMUgon/Y7Nv9RmNbTpBqysRzf4mAKpyCzpeTRi4dKSmO0SpUO+84FQqKw4Smdf3JWkPgyLcq1eBSLKWNMGl3nendhtisHPswxG1tAf5X9vyBhmjoyhDNoyuE7ZnIZ6djgfFsG1MfSvGB8xJxFd2lAnLCFBJO6uVIA2RnunmSIJsZwAHLMtWs7EGHK516+jSNCogkrVIuPSQz/VOBuZCuchS5e/McFe13J9fZ1ShFrmmxRfeQtzC1qhemB3uFtggcThj4OlZI5crXidjBNYxZQKHBpmr/IrE0Ade0NPvIZ9nV91wEJf1GEv16gUblOlFYKnHm9NLMH8QD1pEGxxF4HPT5rqogRjqL42+mp7WZJfnV4W2yyLmNRL0yJDk/zigxx8XMnr3HxfWi71fcBMiDcNGNYoGG5vrkpl+q4IjTN8CDZWBOZmG2TwthW2K9GsLYtWsldtmb+SfduWqZXstC3z7EKE383tfCe6zLbb2SopxUmbeSdaMdEN32DBJZidmixPmvtNP8vz82klSv6cW5/jXxkpxIqY64bwA9maktuw0WpBYGZRbI6pBHWZZ02qqOKi4fPEBVGM4GGpSEzeVwyzJEZs9W7acl+TqHNkySqabUon53JaZWVIu2wxvRYRQkVXvKI9LRz6nIdu94bHHtecCeqxToygYGTFoaG1qhoRp3k/DYUdFEgkC3m8hjenYgXq4C8azHJHL7qwN93Ymy7sshu77MLOu7HzLqzqxqpOe0Hwbvi4WMhXoALuNtbQoVhU3hYxX+s7q6yt6kDBQ3EHPNF33UCJxeLyDvnG3PZDWczrYN3RDXeoxB1btdbc99jbAJ80wOZhCo4+/hKOQSq6Y9yEry56y+Yq7+quVkKKlT4dUjxv16sKknUWUsk6DeI+GsQ6DfI+GuQ6Deo+GtplTUXDzX00/K2lIeS4VhHHRHQvP64WxdCKRysu73exAiy+myuK1uk0gF/E+pwUSXJh/bE9h0UisPJqQf/QiWUt3BXrBM7awFkX0KNtM4scptEt+E0Te9OjtAUskkenrS3sgljDqv4WBYspgKbdl7vdDvZ4KlrYvX7sso1d9mGbpiO22yPaBolVQdhlyLBvitVVrD56d8kMn6CPp1bCnlzu5n0j9tH3qvS9TroZPukdPrnP8H30vSq9e3hD7/FXQnbIimxc95C8BUeXSKZkwh0sWOv0ot7zOThFLWIDnkWzxAAXX+TnzgXRJZllijFA9K2oWQhppxg1ux9Sg9fdtbr0DI2qvfuoMte99daVGkW3SnFPlS23mfNWv5GPUGGh79EHLTT+M/qO1urTl93CPGzt68tTY+6Bbh7qy9H6gYzZaz3xv9gtug0X/5fhGL4veWyOYTYVjcPmHAR2lgfOGYiYTEb7UWoE+v172bttevEEWrnLq4TicMFTfFYS89YLRwkh9vV5U78GC0CfQRrT1gIz9MMNgh9Lv6XiBbLGqh9fsb94d1OyqOsq3jFWtj0e7e5jFi9xmmfNk4DGikdYWKUhZBN9Oq6SVmBMDbI6VlF56mc3HvlFeV76BpwQiyrd/brsxbXEigf/e6SnKD3tlbqM+nlmrj2IE9DF4An0yY85w3rJXHsQDsfKXV965HjyyDN96ZHDAstNZd4+lu8dbDt7kffBn5/k+q1EjzRw8iwYWUNn1I34Qr809COKj1f8toa6tQ7I4hUQWz1jCghT7cKXZ32IkPt4+mZo222rb9BXb17kmb70AZSIgKJVKjIhdMpmN+anBCuOYywM9dvJbDw62HeifNUf0iUICUk2rXXaEOrOBtjmwi3Q41G9fyED5insNmqK/lBWBp3e4ct+KB6Jeoy2SP/E0e7FKfu4jyqCW/NbncWb6Oq8tKAxr6sHW5Pmj3DtxtvpaDIeTf4y3vrqsPyB7pPBZ4PfDx4PJoODwVeDPw2OB2cDZ/CPwT8H/xr8e3Nr87vN482TAvrxRyXnd4PaZ/P8v/QgrgE=</latexit> t(x, z|✓) <latexit sha1_base64="BMHppIHEY/0iNNG8Fhs+Hd4wokw=">AAAcoXicpVltb9y4Ed67vl3dt1z7pcD5A6+G0+Sw3uyu7cS5IkCQu+B6QNK4jpNLa9kGJY0kYiVRJqnN7urUX9Bf06/tHynQH9MhpbX1ujHaNaylOM8zHA6Ho6HWTkIm1Xj8748+/sEPf/Tjn3zy062f/fwXv/zVnU9//VbyVDjwxuEhF+9sKiFkMbxRTIXwLhFAIzuE7+zZV1r+3RyEZDw+VcsEziPqx8xjDlXYdXnnrqVgoYyezKVitifAzTN1bzEkK/I9sVQAit7PL+/sjEdj8yHtxqRs7Dz97eo/A/wcX376mWO53EkjiJUTUinPJuNEnWdUKOaEkG9ZqYSEOjPqwxk2YxqBPM+MITnZxR6XeFzgf6yI6a0yMhpJuYxsREZUBbIp051dsrNUeUfnGYuTVEHsFAN5aUgUJ9o7xGUCHBUusUEdwdBW4gRUUEehD2ujGJuGi8Lgra1dYnwt0dZY4rLhtMl7pgKShFwh0wUPV6jpZ+HbeTYeHQ21L/VlcjTefzydHD48ejh9dHA4yTuYdpjCNXV8Tb0F0xcAcZ1a5Ywfow6jL9/abbO5oLG/HnlS0B8ePBofHh1N9w+njw8mk6OS/QFyOeODEt21ekNX6qUf6rbiPJS1iMkkS2OmFvVOX9AkYE6jN0pDxQR/P7Q5nylqyyFe0pCKxdALOVX1UNSDPom5iGgo2QrOM5naHvMbo2NAB+AObUFnUFeQebCMo2SPporXNUsu1F2HR7g9JUZ6TJXNbIQc4+Z4lejdKE/5caklWCYBxDLPUhHmVS2J6+GGHQbM1Vt+Jof6avz8pBIdQ+IwBdXuYumHBPVVu3UUGsdEeCd5ArFRqLjzhIbhubYDhACvPkeI0wj1R7h/zCZFkdgrltwl6NsQVH2zoMcb7sio4+AekWsVVhBQVeew2apOWUhsgWaYhiQsxu0WRTR2i+E0JWS4KmKJiQbXXA6Ji24QJtnJkZ4ki33sLaSjCJOb2bzfQAyChiYJoB6FqC0rhvel+szSMahjIz+bnGcmZ0on25nkeR2G7QTThYnEPLOwbcU8QeNtTMozy2a+nLGk1hdzFrvoioYmjE8212tRjBjgImSBUsmXDx4Y0YgL/wFG8wM0ojBIKZz0Ozb/UpvV0KYbsLYe3eBjCqQis6Tn0YiFS0titkuUDvnOB0KhsuIonX1xV5L6MCzKtXoViChjTRtc5nk3YrcpBj/PMhhZQ3+U/60hY5g5MoYyaMvgKmVzGurZ4XxYBFfG0L9gfMScRHRpQ52whASRuLtSAdoY7Z1miiTEcgJwzLZoORNjyOVev44iQaMKKlWLjEsP/VTjbGQqnIcsXf7aBHtdy9XVVUoRaplvUnzlLcw1aI3qgd3groEFEoc/DpaSOXK94nUyTmAdUypwaJi9zC9NAHXsDT3xGvZVftkBC31Rh73YoFK4TZVWCJ66tzOxBPMDdb9BsMVNBD47aaqLEoyh+troq+1lSX55elFssyxiUi9NiwxN8vMPcvBxJa9y831hudT3ATMh3jRgWKNguL2+LJXpuyI03uBDsLEiMDfbIIO3rbBdi2ZtWbSWvWzL/LXsm7ZMrWWnbZlnFyL8bm7nG9FFttfOVkkpTtrMG9GaiW74GgsuwezUZHnS3G/6WZ6fTStR8qfc+hz/ykghVsRcN4Tvyc6UXIeNVgsCM4tic0wlqMs8a1JFFRcNnycuiGIED0tFYvK+YpglMWKrd9OW+5pEnSNLVtFsUzo5F9MqK0PaRYvptYgQKrrmFe1p4dBnPHS7Nzz2uOZMUI91YgQFIysODa1V1Yg4zftpKOygQCJZyOMNvDkVa1AHf9Fgljt60YVddWNXXdhlN3bZhZ13Y+ddWNWNVZ32guDd8HGxkC9BBdxtrKFDsai8LmK+0ndWWVvVgYKH4gZ4ou+6gRKLxeUN8rW57YeymNfBuqMb7lCJO7ZqrbnvsbcBPmmAzcMUHH38JRyDVHTHuAlfXfSWzXXe1V2thBQrfTqkeN6uVxUk6yykkk0axG00iE0a5G00yE0a1G00tMuaiobVbTT8taUh5LhWEcdEdCs/rhfF0IpHKy7vt7ECLL6bK4rW6TSAX8T6nBRJcmH9oT2HRSKw8mpBf9+JZS3cJesEztrAWRfQo20zixym0S34qold9ShtAYvk0WlrC7sg1rCqv0XBYgqgaffFfreDPZ6KFvagH7tsY5d92KbpiO32iLZBYlUQdhky7JtidRWrj959MsMn6L2plbD7F/t534h99IMq/aCTboZPeodPbjN8H/2gSu8e3tB7/JWQB2RNNq7bJW/B0SWSKZlwBwvWOr2o93wOTlGL2IBn0SwxwMUX+ZlzTnRJZpliDBB9LWoWQtopRs3+h9TgdX+jLj1Do+rgNqrM9WCzdaVG0a1S3FJly23mvNVv5F1UWOi7+0ELjf+Mvscb9enLfmEetg715aEx95FuHunL480DGbM3euJ/sVt0Gy7+L8MxfF/w2BzDbCoah805COwsD5wzEDGZjA6j1Aj0+/eyd8/04gm0cpdXCcXhgqf4rCTmrReOEkLs6/Omfg0WgD6DNKatBWbo3S2CH0u/peIFssaqH1+xv3h3U7Ko6yreMVa2Nx7tH2IWL3GaZ82TgMaKR1hYpSFkE306rpLWYEwNsjpWUXnqZzce+UV5XvoanBCLKt39quzFtcSKB/97pKcoPe2Vuoz6eWauPYgT0MXgCfTJjznDeslcexAOx8pdX3rkePLIM33pkcMCy01l3j6W7x1sO3ue98GfneT6rUSPNHDyLBhZQ2fUjfhCvzT0I4qPV/y2hrq1CcjiNRBbPWMKCFPtwhdv+hAh9/H0zdC261bfoC9fP88zfekDKBEBRatUZELolM1W5qcEK45jLAz128lsPHp06ET5uj+kSxASkmxa67Qh1J0NsM2FW6DHo3r/QgbMU9ht1BT9oawMOr3Bl/1QPBL1GG2R/omj3YtT9nEfVQTX5rc6izfR1XlpQWNel3d2Js0f4dqNt9PRZDya/Hm88/RoUHw+GXw2+N3g3mAyeDR4Ovjj4HjwZuAM/j74x+Cfg39t72x/u328fVJAP/6o5PxmUPtsn/0XFWCvsQ==</latexit> <latexit sha1_base64="WhfdL6HX9XmJ7WXSrLsNwv05onI=">AAAcoXicpVltb9zGEb6kb4n65rRfCsQfNhXs2sHpfHeSLCmFAcOJkQawa0WWHLeiJCzJIbk4kkvtLs93Ylj0B/TX5Gv7Rwr0x3R2yZP4ehbaE8Rb7jzP7Ozs7HCWZychk2o8/vcHH/7oxz/56c8++njj57/45a9+feeT37yRPBUOnDg85OKtTSWELIYTxVQIbxMBNLJD+M6efanl381BSMbjY7VM4Cyifsw85lCFXRd37lsKFsroyVwqZlsC3DxTDxZDckW+J5YKQNGH+cWdzfFobD6k3ZiUjc2nv7v6z8d//+HZ4cUnnzqWy500glg5IZXydDJO1FlGhWJOCPmGlUpIqDOjPpxiM6YRyLPMGJKTe9jjEo8L/I8VMb1VRkYjKZeRjciIqkA2ZbqzS3aaKm//LGNxkiqInWIgLw2J4kR7h7hMgKPCJTaoIxjaSpyACuoo9GFtFGPTcFEYvLFxjxhfS7Q1lrhsOG3yjqmAJCFXyHTBwxVq+ln4dp6NR/tD7Ut9meyPtw+mk93H+4+nezu7k7yDaYcpXFPH19RbMH0BENepVc74AHUYffnGvTabCxr7q5EnBf3xzt54d39/ur07PdiZTPZL9nvI5Yx3SnTX6g1dqZd+qNuK81DWIiaTLI2ZWtQ7fUGTgDmN3igNFRP83dDmfKaoLYd4SUMqFkMv5FTVQ1EP+iTmIqKhZFdwlsnU9pjfGB0DOgB3aAs6g7qCzINlHCVbNFW8rllyoe47PMLtKTHSY6psZiPkEDfHq0TvRnnMD0stwTIJIJZ5loowr2pJXA837DBgrt7yMznUV+PnJ5XoGBKHKah2F0s/JKiv2q2j0DgmwjvJE4iNQsWdJzQMz7QdIAR49TlCnEaoP8L9YzYpisRWseQuQd+GoOqbBT3ecEdGHQf3iFypsIKAqjqHza7qlIXEFmiGaUjCYtxuUURjtxhOU0KGqyKWmGhwzeWQuOgGYZKdHOlJstjH3kI6ijC5mc37NcQgaGiSAOpRiNqwYnhXqs8sHYM6NvLTyVlmcqZ0ss1Jntdh2E4wXZhIzDML21bMEzTexqQ8s2zmyxlLan0xZ7GLrmhowvhkc70WxYgBLkIWKJV88eiREY248B9hND9CIwqDlMJJv2XzL7RZDW26ASvr0Q0+pkAqMkt6Ho1YuLQkZrtE6ZDvfCAUKiuO0tkXdyWpD8OiXKtXgYgy1rTBZZ53I3abYvDzLIORNfRH+d8aMoaZI2Mog7YMLlM2p6GeHc6HRXBpDP0LxkfMSUSXNtQJS0gQibsrFaCN0d5ppkhCLCcAx2yLljMxhlzu9esoEjSqoFK1yLj00E81zkamwnnI0uWvTbDXtVxeXqYUoZb5JsVX3sJcg1aoHtgN7hpYIHH4w2ApmSNXK14n4wRWMaUCh4bZy/zCBFDH3tATr2Ff5RcdsNAXddiLNSqF21RpheCpB5sTSzA/UA8bBFvcROCzo6a6KMEYqq+NvtpeluQXx+fFNssiJvXStMjQJD9/LwcfV/IyN9/nlkt9HzAT4k0DhjUKhtvri1KZvitC4wQfgo0VgbnZBhm8aYXtSjRry6KV7GVb5q9kX7dlaiU7bss8uxDhd3M734jOs612tkpKcdJm3ohWTHTDV1hwCWanJsuT5n7Tz/L8dFqJkj/n1mf4V0YKsSLmuiF8Tzan5DpstFoQmFkUm2MqQV3mWZMqqrho+DxxQRQjeFgqEpP3FcMsiRFbvZu23Nck6hxZsopmm9LJOZ9WWRnSzltMr0WEUNEVr2hPC4c+46HbveGxxzVngnqsEyMoGFlxaGitqkbEad5PQ2EHBRLJQh6v4c2pWIE6+IsGs9zRiy7sVTf2qgu77MYuu7Dzbuy8C6u6sarTXhC8Gz4uFvIlqIC7jTV0KBaV10XMl/rOKmurOlDwUNwAj/RdN1Bisbi8Qb42t/1QFvM6WHd0wx0qccdWrTX3PfY2wEcNsHmYgqOPv4RjkIruGDfhq4vesrnKu7qrlZBipU+HFM/b9aqCZJ2FVLJOg7iNBrFOg7yNBrlOg7qNhnZZU9FwdRsNf21pCDmuVcQxEd3Kj6tFMbTi0YrL+02sAIvv5oqidToN4BexPiNFklxYf2zPYZEIrLxa0D90YlkLd8E6gbM2cNYF9GjbzCKHaXQLftXEXvUobQGL5NFpawu7INawqr9FwWIKoGn3+Xa3gz2eihZ2px+7bGOXfdim6Yjt9oi2QWJVEHYZMuybYnUVq4/ebTLDJ+iDqZWwh+fbed+IffSdKn2nk26GT3qHT24zfB99p0rvHt7Qe/yVkEdkRTauu0fegKNLJFMy4Q4WrHV6Ue/4HJyiFrEBz6JZYoCLz/NT54zokswyxRgg+lrULIS0U4ya7fepwev2Wl16hkbVzm1UmevOeutKjaJbpbilypbbzHmr38j7qLDQd/+9Fhr/GX0Ha/Xpy3ZhHrZ29eWxMXdPN/f15WD9QMbstZ74X+wW3YaL/8twDN8XPDbHMJuKxmFzDgI7ywPnDERMJqPdKDUC/f697N0yvXgCrdzlVUJxuOApPiuJeeuFo4QQ+/q8qV+DBaDPII1pa4EZ+t4GwY+l31LxAllj1Y+v2F+8uylZ1HUV7xgr2xqPtncxi5c4zbPmSUBjxSMsrNIQsok+HVdJKzCmBlkdq6g89bMbj/yiPC99BU6IRZXuflX24lpixYP/PdJjlB73Sl1G/Twz1x7EEehi8Aj65IecYb1krj0Ih2Plri89cjx55Jm+9MhhgeWmMm8fy/cOtp09z/vgz45y/VaiRxo4eRaMrKEz6kZ8rl8a+hHFxyt+W0PdWgdk8QqIrZ4xBYSpduGLkz5EyH08fTO07brVN+jL18/zTF/6AEpEQNEqFZkQOmazK/NTghXHMRaG+u1kNh7t7TpRvuoP6RKEhCSb1jptCHVnA2xz4Rbo8ajev5AB8xR2GzVFfygrg05v8GU/FI9EPUZbpH/iaPfilH3cRxXBtfmtzuJNdHVeWtCY18WdzUnzR7h24810NBmPJt+ON5/uD4rPR4NPB78fPBhMBnuDp4M/DQ4HJwNn8I/BD4N/Dv51d/PuN3cP7x4V0A8/KDm/HdQ+d0//C6BfsS4=</latexit> <latexit sha1_base64="WhfdL6HX9XmJ7WXSrLsNwv05onI=">AAAcoXicpVltb9zGEb6kb4n65rRfCsQfNhXs2sHpfHeSLCmFAcOJkQawa0WWHLeiJCzJIbk4kkvtLs93Ylj0B/TX5Gv7Rwr0x3R2yZP4ehbaE8Rb7jzP7Ozs7HCWZychk2o8/vcHH/7oxz/56c8++njj57/45a9+feeT37yRPBUOnDg85OKtTSWELIYTxVQIbxMBNLJD+M6efanl381BSMbjY7VM4Cyifsw85lCFXRd37lsKFsroyVwqZlsC3DxTDxZDckW+J5YKQNGH+cWdzfFobD6k3ZiUjc2nv7v6z8d//+HZ4cUnnzqWy500glg5IZXydDJO1FlGhWJOCPmGlUpIqDOjPpxiM6YRyLPMGJKTe9jjEo8L/I8VMb1VRkYjKZeRjciIqkA2ZbqzS3aaKm//LGNxkiqInWIgLw2J4kR7h7hMgKPCJTaoIxjaSpyACuoo9GFtFGPTcFEYvLFxjxhfS7Q1lrhsOG3yjqmAJCFXyHTBwxVq+ln4dp6NR/tD7Ut9meyPtw+mk93H+4+nezu7k7yDaYcpXFPH19RbMH0BENepVc74AHUYffnGvTabCxr7q5EnBf3xzt54d39/ur07PdiZTPZL9nvI5Yx3SnTX6g1dqZd+qNuK81DWIiaTLI2ZWtQ7fUGTgDmN3igNFRP83dDmfKaoLYd4SUMqFkMv5FTVQ1EP+iTmIqKhZFdwlsnU9pjfGB0DOgB3aAs6g7qCzINlHCVbNFW8rllyoe47PMLtKTHSY6psZiPkEDfHq0TvRnnMD0stwTIJIJZ5loowr2pJXA837DBgrt7yMznUV+PnJ5XoGBKHKah2F0s/JKiv2q2j0DgmwjvJE4iNQsWdJzQMz7QdIAR49TlCnEaoP8L9YzYpisRWseQuQd+GoOqbBT3ecEdGHQf3iFypsIKAqjqHza7qlIXEFmiGaUjCYtxuUURjtxhOU0KGqyKWmGhwzeWQuOgGYZKdHOlJstjH3kI6ijC5mc37NcQgaGiSAOpRiNqwYnhXqs8sHYM6NvLTyVlmcqZ0ss1Jntdh2E4wXZhIzDML21bMEzTexqQ8s2zmyxlLan0xZ7GLrmhowvhkc70WxYgBLkIWKJV88eiREY248B9hND9CIwqDlMJJv2XzL7RZDW26ASvr0Q0+pkAqMkt6Ho1YuLQkZrtE6ZDvfCAUKiuO0tkXdyWpD8OiXKtXgYgy1rTBZZ53I3abYvDzLIORNfRH+d8aMoaZI2Mog7YMLlM2p6GeHc6HRXBpDP0LxkfMSUSXNtQJS0gQibsrFaCN0d5ppkhCLCcAx2yLljMxhlzu9esoEjSqoFK1yLj00E81zkamwnnI0uWvTbDXtVxeXqYUoZb5JsVX3sJcg1aoHtgN7hpYIHH4w2ApmSNXK14n4wRWMaUCh4bZy/zCBFDH3tATr2Ff5RcdsNAXddiLNSqF21RpheCpB5sTSzA/UA8bBFvcROCzo6a6KMEYqq+NvtpeluQXx+fFNssiJvXStMjQJD9/LwcfV/IyN9/nlkt9HzAT4k0DhjUKhtvri1KZvitC4wQfgo0VgbnZBhm8aYXtSjRry6KV7GVb5q9kX7dlaiU7bss8uxDhd3M734jOs612tkpKcdJm3ohWTHTDV1hwCWanJsuT5n7Tz/L8dFqJkj/n1mf4V0YKsSLmuiF8Tzan5DpstFoQmFkUm2MqQV3mWZMqqrho+DxxQRQjeFgqEpP3FcMsiRFbvZu23Nck6hxZsopmm9LJOZ9WWRnSzltMr0WEUNEVr2hPC4c+46HbveGxxzVngnqsEyMoGFlxaGitqkbEad5PQ2EHBRLJQh6v4c2pWIE6+IsGs9zRiy7sVTf2qgu77MYuu7Dzbuy8C6u6sarTXhC8Gz4uFvIlqIC7jTV0KBaV10XMl/rOKmurOlDwUNwAj/RdN1Bisbi8Qb42t/1QFvM6WHd0wx0qccdWrTX3PfY2wEcNsHmYgqOPv4RjkIruGDfhq4vesrnKu7qrlZBipU+HFM/b9aqCZJ2FVLJOg7iNBrFOg7yNBrlOg7qNhnZZU9FwdRsNf21pCDmuVcQxEd3Kj6tFMbTi0YrL+02sAIvv5oqidToN4BexPiNFklxYf2zPYZEIrLxa0D90YlkLd8E6gbM2cNYF9GjbzCKHaXQLftXEXvUobQGL5NFpawu7INawqr9FwWIKoGn3+Xa3gz2eihZ2px+7bGOXfdim6Yjt9oi2QWJVEHYZMuybYnUVq4/ebTLDJ+iDqZWwh+fbed+IffSdKn2nk26GT3qHT24zfB99p0rvHt7Qe/yVkEdkRTauu0fegKNLJFMy4Q4WrHV6Ue/4HJyiFrEBz6JZYoCLz/NT54zokswyxRgg+lrULIS0U4ya7fepwev2Wl16hkbVzm1UmevOeutKjaJbpbilypbbzHmr38j7qLDQd/+9Fhr/GX0Ha/Xpy3ZhHrZ29eWxMXdPN/f15WD9QMbstZ74X+wW3YaL/8twDN8XPDbHMJuKxmFzDgI7ywPnDERMJqPdKDUC/f697N0yvXgCrdzlVUJxuOApPiuJeeuFo4QQ+/q8qV+DBaDPII1pa4EZ+t4GwY+l31LxAllj1Y+v2F+8uylZ1HUV7xgr2xqPtncxi5c4zbPmSUBjxSMsrNIQsok+HVdJKzCmBlkdq6g89bMbj/yiPC99BU6IRZXuflX24lpixYP/PdJjlB73Sl1G/Twz1x7EEehi8Aj65IecYb1krj0Ih2Plri89cjx55Jm+9MhhgeWmMm8fy/cOtp09z/vgz45y/VaiRxo4eRaMrKEz6kZ8rl8a+hHFxyt+W0PdWgdk8QqIrZ4xBYSpduGLkz5EyH08fTO07brVN+jL18/zTF/6AEpEQNEqFZkQOmazK/NTghXHMRaG+u1kNh7t7TpRvuoP6RKEhCSb1jptCHVnA2xz4Rbo8ajev5AB8xR2GzVFfygrg05v8GU/FI9EPUZbpH/iaPfilH3cRxXBtfmtzuJNdHVeWtCY18WdzUnzR7h24810NBmPJt+ON5/uD4rPR4NPB78fPBhMBnuDp4M/DQ4HJwNn8I/BD4N/Dv51d/PuN3cP7x4V0A8/KDm/HdQ+d0//C6BfsS4=</latexit> <latexit sha1_base64="GuTW9do3dzdd+I9ZbAmjhvNlqcg=">AAAcoXicpVltc9y2Eb6kb6n65rQfow9INXbtzOl0d5IsKR3PZJx40szYtSpLjltR0oDkksQcSVAAeL4Tw/6C/pp+bf9I/00XIE/i61nTnkY8EPs8i8VisVzw7CRkUo3H//no4x/9+Cc//dknP9/4xS9/9evfPPj0t28lT4UDZw4PuXhnUwkhi+FMMRXCu0QAjewQvrdnX2v593MQkvH4VC0TuIioHzOPOVRh19WDR5aChTJ6MpeK2bYAN8/U48WQ3JAfiKUCUPRJfvVgazwamw9pNyZlY2tQfo6vPv3MsVzupBHEygmplOeTcaIuMioUc0LIN6xUQkKdGfXhHJsxjUBeZMaQnDzEHpd4XOB/rIjprTIyGkm5jGxERlQFsinTnV2y81R5hxcZi5NUQewUA3lpSBQn2jvEZQIcFS6xQR3B0FbiBFRQR6EPa6MYm4aLwuCNjYfE+FqirbHEZcNpk/dMBSQJuUKmCx6uUNPPwrfzbDw6HGpf6svkcLx7NJ3sPz18Oj3Y25/kHUw7TOGWOr6l3oPpC4C4Tq1yxkeow+jLNx622VzQ2F+NPCnoT/cOxvuHh9Pd/enR3mRyWLI/QC5nvFeiu1Zv6Eq99EPdVpyHshYxmWRpzNSi3ukLmgTMafRGaaiY4O+HNuczRW05xEsaUrEYeiGnqh6KetBnMRcRDSW7gYtMprbH/MboGNABuENb0BnUFWQeLOMo2aap4nXNkgv1yOERbk+JkR5TZTMbIce4OV4nejfKU35cagmWSQCxzLNUhHlVS+J6uGGHAXP1lp/Job4aPz+rRMeQOExBtbtY+iFBfdVuHYXGMRHeSZ5AbBQq7jyjYXih7QAhwKvPEeI0Qv0R7h+zSVEktosldwn6NgRV3yzo8YY7Muo4uEfkSoUVBFTVOWx2U6csJLZAM0xDEhbjdosiGrvFcJoSMlwVscREg2suh8RFNwiT7ORIT5LFPvYW0lGEyc1s3m8hBkFDkwRQj0LUhhXD+1J9ZukY1LGRn08uMpMzpZNtTfK8DsN2gunCRGKeWdi2Yp6g8TYm5ZllM1/OWFLrizmLXXRFQxPGJ5vrtShGDHARskCp5MudHSMaceHvYDTvoBGFQUrhpN+x+ZfarIY23YCV9egGH1MgFZklPY9GLFxaErNdonTIdz4QCpUVR+nsi7uS1IdhUa7Vq0BEGWva4DLPuxO7TTH4eZbByBr6o/zvDRnDzJExlEFbBtcpm9NQzw7nwyK4Nob+FeMj5iSiSxvqhCUkiMTdlQrQxmjvNFMkIZYTgGO2RcuZGEMu9/p1FAkaVVCpWmRceuinGmcjU+E8ZOnyNybY61qur69TilDLfJPiK29hbkErVA/sDncLLJA4/HGwlMyRqxWvk3ECq5hSgUPD7FV+ZQKoY2/oidewr/OrDljoizrs5RqVwm2qtELw1OOtiSWYH6gnDYIt7iLw+UlTXZRgDNXXRl9tL0vyq9PLYptlEZN6aVpkaJJffJCDjyt5nZvvS8ulvg+YCfGmAcMaBcPtzVWpTN8VoXGGD8HGisDcbIMM3rbCdiWatWXRSvaqLfNXsm/bMrWSnbZlnl2I8Lu5ne9El9l2O1slpThpM+9EKya64RssuASzU5PlSXO/6Wd5fj6tRMmfc+tz/CsjhVgRc90QfiBbU3IbNlotCMwsis0xlaAu86xJFVVcNHyeuCCKETwsFYnJ+4phlsSIrd5NW+5rEnWOLFlFs03p5FxOq6wMaZctptciQqjoile0p4VDn/PQ7d7w2OOaM0E91okRFIysODS0VlUj4jTvp6GwgwKJZCGP1/DmVKxAHfxFg1nu6EUX9qYbe9OFXXZjl13YeTd23oVV3VjVaS8I3g0fFwv5ClTA3cYaOhSLytsi5mt9Z5W1VR0oeCjugCf6rhsosVhc3iHfmNt+KIt5Haw7uuEOlbhjq9aa+x57G+CTBtg8TMHRx1/CMUhFd4yb8NVFb9lc5V3d1UpIsdKnQ4rn7XpVQbLOQipZp0HcR4NYp0HeR4Ncp0HdR0O7rKlouLmPhr+1NIQc1yrimIju5cfVohha8WjF5f0uVoDFd3NF0TqdBvCLWJ+TIkkurD+257BIBFZeLegfOrGshbtincBZGzjrAnq0bWaRwzS6Bb9pYm96lLaARfLotLWFXRBrWNXfomAxBdC0+3K328EeT0ULu9ePXbaxyz5s03TEdntE2yCxKgi7DBn2TbG6itVH7y6Z4RP08dRK2JPL3bxvxD76XpW+10k3wye9wyf3Gb6Pvleldw9v6D3+SsgOWZGN6x6St+DoEsmUTLiDBWudXtR7PgenqEVswLNolhjg4ov83LkguiSzTDEGiL4VNQsh7RSjZvdDavC6u1aXnqFRtXcfVea6t966UqPoVinuqbLlNnPe6jfyESos9D36oIXGf0bf0Vp9+rJbmIetfX15asw90M1DfTlaP5Axe60n/he7Rbfh4v8yHMP3JY/NMcymonHYnIPAzvLAOQMRk8loP0qNQL9/L3u3TS+eQCt3eZVQHC54is9KYt564SghxL4+b+rXYAHoM0hj2lpghn64QfBj6bdUvEDWWPXjK/YX725KFnVdxTvGyrbHo919zOIlTvOseRLQWPEIC6s0hGyiT8dV0gqMqUFWxyoqT/3sxiO/KM9L34ATYlGlu1+XvbiWWPHgf4/0FKWnvVKXUT/PzLUHcQK6GDyBPvkxZ1gvmWsPwuFYuetLjxxPHnmmLz1yWGC5qczbx/K9g21nL/I++POTXL+V6JEGTp4FI2vojLoRX+iXhn5E8fGK39ZQt9YBWbwCYqtnTAFhql348qwPEXIfT98Mbbtt9Q366s2LPNOXPoASEVC0SkUmhE7Z7Mb8lGDFcYyFoX47mY1HB/tOlK/6Q7oEISHJprVOG0Ld2QDbXLgFejyq9y9kwDyF3UZN0R/KyqDTO3zZD8UjUY/RFumfONq9OGUf91FFcGt+q7N4E12dlxY05nX1YGvS/BGu3Xg7HU3Go8lfxltfHZY/0H0y+Gzw+8HjwWRwMPhq8KfB8eBs4Az+Mfjn4F+Df29ubX63ebx5UkA//qjk/G5Q+2ye/xcse64D</latexit> ✓ <latexit sha1_base64="uKih3q81UG5Y39UkSUDmaMgSwo0=">AAAcmHicpVltc9y2Eb6kb6n65qTfGnWGqcaukzmd706SLaXjGY8Tj5sZu1ZlyXEjShqQXJKYAwkKAM93Ytkv/TX9mv6B/o3+kH7vAuRJfD1r2tOIB2KfZ7FYLJYLnpMwKtV4/O8PPvzBD3/045989NONn/38F7/81Z2PP3kjeSpcOHE54+KtQyQwGsOJoorB20QAiRwG3zqzr7T82zkISXl8rJYJnEUkiKlPXaKw6+LOb20FC2X0ZB4Rs22HpZBntgpBkfziztZ4NDYfq92YlI2tJ4P/fP+vwWBwePHxp67tcTeNIFYuI1KeTsaJOsuIUNRlkG/YqYSEuDMSwCk2YxKBPMvM+Ll1F3s8y+cC/2Nlmd4qIyORlMvIQWREVCibMt3ZJTtNlb9/ltE4SRXEbjGQnzJLcUs7xfKoAFexJTaIKyjaarkhEcRV6LraKMam4aIweGPjrmVcLNHWWOJq4bStd1SFVsK4QqYHPi5Mxb0CvDwTgZNn49H+UPtSXyb7452D6WTv4f7D6aPdvUnewSwWpqSOr6m3YAYCIK5Tq5zxAeow+vKNu202FyQOViNPCvrD3Ufjvf396c7e9GB3Mtkv2e8hlzPeLdFdqzf0pF76oW4rzpmsRUwmaRpTtah3BoIkIXUbvVHKFBX83dDhfKaII4d4SRkRi6HPOFH1UNSDPo65iAiT9ArOMpk6Pg0ao2NAh+ANHUFmUFeQ+bCMo2SbpIrXNUsu1D2XR7grJUZ6TJRDHYQc4uZ4lehNKI/5YaklXCYhxDLPUsHyqpbE83GfDkPq6Z0+k0N9NX5+XImOoeVSBdXuYumHFuqrdusoNI6J8E7yBGKjUHH3MWHsTNsBQoBfnyPEaYT6I9w/ZpOiSGwXS+5Z6FsGqr5Z0OMNd2TEdXGPyJUKOwyJqnPo7KpOWUhsgWaYhrRojNstikjsFcNpCqO4KmKJiQbXXA4tD90gTI6TIz1JGgfYW0hHkc5tevM+hxgEYSYJoB6FqA07hnelekyDGIM6NvLTyVlmUqV0s61Jntdh2E4wXZhIxOSJbTvmCRrvYC6e2Q4N5Iwmtb6Y09hDVzQ0YXzSuV6LYsQQFyELlUq+fPDAiEZcBA8wmh+gEYVBSuGk39L5l9qshjbdgJX16IYAUyARmS19n0SULW2J2S5ROuSbzwGTqAqVFUfp7Iu70qoPQ6Ncq1ehiDLatMGjvn8j9ppiCPIsg5E9DEb53xoyipkjoyiDtgwuUzonTM8O50MjuDSG/gXjI+ZWRJYO1AlLSBCJuysVoI3R3mmmSMuy3RBcsy1azsQY8rjfr6NI0KiCSNUi49JDP9U4G5kK5yFLl782wV7Xcnl5mRKE2ubbKr7yFuYatEL1wG5w18ACicMfhktJXbla8ToZJ7CKKRW6hGUv8wsTQB17Q0+8hn2VX3TAWCDqsBdrVAqvqdJm4Kv7WxNb0CBUnzcIjriJwKdHTXVRgjFUXxt9dfwsyS+Oz4ttlkVU6qVpkaFJfvZeDj6u5GVuvs9tjwQBYCbEmwYMaxQMt9cXpTJ9V4TGCT4EGysCc7MNMnjTCtuVaNaWRSvZy7YsWMmet2VqJTtuy3ynEOF3czvfiM6z7Xa2Skpx0mbeiFZMdMPXWHAJ6qQmy1vN/aaf5fnptBIlf8rtz/CvjBTLjqjnMfirtTW1rsNGqwWBmUXROaYS1GWeNakiiouGzxMPRDGCj6WiZfK+opglMWKrd9OW+5pEnSNLVtFsUzo559MqK0PaeYvpt4jAFFnxiva0cOhTzrzuDY89XnEkqMW6ZQQFY3VmaI6vEXGa99NQ2EGBRFLG4zW8ORErUAd/0WCWO3rRhb3qxl51YZfd2GUXdt6NnXdhVTdWddoLgnfDx8VCvgQVcq+xhi7BovK6iPlK39llbVUHCs7EDfBI33UDJRaLyxvka3PbD6Uxr4N1RzfcJRJ3bNVac99jbwN81ACbhym4+tRrcQxS0R3jJnx10Vs2V3lXd7USUqz06ZDgMbteVVhZZyGVrNMgbqNBrNMgb6NBrtOgbqOhXdZUNFzdRsN3LQ2M41pFHBPRrfy4WhRDKx6tuLzfxAqw+G6uKFqn0wB+WfZnVpEkF/Yf2nNYJAIrrxb0951Y2sJd0E7grA2cdQF90jazyGEa3YJfNbFXPUpbwCJ5dNrawi4se1jV36JgMQXQtPt8p9vBPk9FC7vbj122scs+bNN0xHZ7RNsgsSpgXYYM+6ZYXcXqo3fHmuET9P7UTujn5zt534h99N0qfbeTboZPeodPbjN8H323Su8e3tB7/JVYD6wV2bjurvUGXF0imZIJd7CgrdOLesfn4Ba1iAN4Fs0SA1x8kZ+6Z5YuyWxTjAGir0XNQkg7xajZeZ8avO6s1aVnaFTt3kaVue6ut67UKLpViluqbLnNnLf6jbyHCgt9995rofGf0XewVp++7BTmYWtPXx4acx/p5r6+HKwfyJi91hP/i92i23DxfxmO4fuCx+YY5hDROGzOQWBneeCcgYityWgvSo1Av3Yve7dNL55AK3d5lVAcLniKz0rLvPXCURjEgT5v6tdgIegzSGPaWmCGvrth4cfWb6l4gayx6sdX7C/e3ZQs4nmKd4yVbY9HO3uYxUuc5tnzJCSx4hEWVimDbKJPx1XSCoypQVbHKipP/ezGI78oz0tfg8uwqNLdr8peXEusePC/R3qM0uNeqUdJkGfm2oM4Al0MHkGf/JBTrJfMtQfhcqzc9aVHjiePPNOXHjkssNxU5u1j+d7BcbJneR/86VGu30r0SEM3z8KRPXRH3Ygv9EvDICL4eMVve6hb64A0XgGx1TOmAJZqF7446UMwHuDpm6Jt162+QV++fpZn+tIHUCICglapyITQMZ1dmZ8S7DiOsTDUbyez8ejRnhvlq35GliAkJNm01ukA050NsMOFV6DHo3r/QobUV9ht1BT9TFYGnd7gy34oHol6jLZI/8TR7sUpB7iPKoJr81udxZvo6ry0oDGviztbk+aPcO3Gm+loMh5N/jzeerI/KD4fDT4d/G5wfzAZPBo8GfxxcDg4GbiDvw/+Mfh+8M/N32w+2Xy++U0B/fCDkvPrQe2zefRfYlyt/g==</latexit> <latexit sha1_base64="sg4BK8w5ytAcXmQyQ0tWWWn7/Y0=">AAAcmHicpVltc9y2Eb64b6n65qTfGnWGqcaukzmd706SJafjGY8Tj5upXauy7LgRJQ1ILknMgQQFgOc7seyX/pp+Tf9KvvSH9HsXIE/i61nTnkY8EPs8i8VisVzwnIRRqcbjf39w6wc//NGPf/LhTzd+9vNf/PJXtz/6+I3kqXDhtcsZF28dIoHRGF4rqhi8TQSQyGHwjTP7Usu/mYOQlMfHapnAaUSCmPrUJQq7zm//1lawUEZP5hEx23ZYCnlmqxAUyc9vb41HY/Ox2o1J2dh6PPjPd99/f+tPh+cffeLaHnfTCGLlMiLlyWScqNOMCEVdBvmGnUpIiDsjAZxgMyYRyNPMjJ9bd7DHs3wu8D9WlumtMjISSbmMHERGRIWyKdOdXbKTVPkHpxmNk1RB7BYD+SmzFLe0UyyPCnAVW2KDuIKirZYbEkFcha6rjWJsGi4Kgzc27ljGxRJtjSWuFk7bekdVaCWMK2R64OPCVNwrwMszETh5Nh4dDLUv9WVyMN55OJ3sPTh4MN3f3ZvkHcxiYUrq+Ip6A2YgAOI6tcoZP0QdRl++cafN5oLEwWrkSUF/sLs/3js4mO7sTR/uTiYHJfs95HLGuyW6a/WGntRLP9RtxTmTtYjJJE1jqhb1zkCQJKRuozdKmaKCvxs6nM8UceQQLykjYjH0GSeqHop60EcxFxFhkl7CaSZTx6dBY3QM6BC8oSPIDOoKMh+WcZRsk1TxumbJhbrr8gh3pcRIj4lyqIOQQ9wcLxO9CeUxPyy1hMskhFjmWSpYXtWSeD7u02FIPb3TZ3Kor8bPjyrRMbRcqqDaXSz90EJ91W4dhcYxEd5JnkBsFCruPiKMnWo7QAjw63OEOI1Qf4T7x2xSFIntYsk9C33LQNU3C3q84Y6MuC7uEblSYYchUXUOnV3WKQuJLdAM05AWjXG7RRGJvWI4TWEUV0UsMdHgmsuh5aEbhMlxcqQnSeMAewvpKNK5TW/eZxCDIMwkAdSjELVhx/CuVI9pEGNQx0Z+MjnNTKqUbrY1yfM6DNsJpgsTiZg8sW3HPEHjHczFM9uhgZzRpNYXcxp76IqGJoxPOtdrUYwY4iJkoVLJF/fvG9GIi+A+RvN9NKIwSCmc9Fs6/0Kb1dCmG7CyHt0QYAokIrOl75OIsqUtMdslSod88zlgElWhsuIonX1xV1r1YWiUa/UqFFFGmzZ41PevxV5TDEGeZTCyh8Eo/3tDRjFzZBRl0JbBRUrnhOnZ4XxoBBfG0L9ifMTcisjSgTphCQkicXelArQx2jvNFGlZthuCa7ZFy5kYQx73+3UUCRpVEKlaZFx66KcaZyNT4Txk6fJXJtjrWi4uLlKCUNt8W8VX3sJcgVaoHtg17gpYIHH4w3ApqStXK14n4wRWMaVCl7DsRX5uAqhjb+iJ17Av8/MOGAtEHfZ8jUrhNVXaDHx1b2tiCxqE6rMGwRHXEfjkqKkuSjCG6mujr46fJfn58VmxzbKISr00LTI0yU/fy8HHlbzIzfeZ7ZEgAMyEeNOAYY2C4fbqvFSm74rQeI0PwcaKwNxsgwzetMJ2JZq1ZdFK9qItC1ayZ22ZWsmO2zLfKUT43dzO16KzbLudrZJSnLSZ16IVE93wFRZcgjqpyfJWc7/pZ3l+Mq1EyZ9z+1P8KyPFsiPqeQz+Zm1Nrauw0WpBYGZRdI6pBHWZZ02qiOKi4fPEA1GM4GOpaJm8ryhmSYzY6t205b4mUefIklU025ROztm0ysqQdtZi+i0iMEVWvKI9LRz6hDOve8Njj1ccCWqxbhlBwVidGZrja0Sc5v00FHZQIJGU8XgNb07ECtTBXzSY5Y5edGEvu7GXXdhlN3bZhZ13Y+ddWNWNVZ32guDd8HGxkC9AhdxrrKFLsKi8KmK+1Hd2WVvVgYIzcQ080nfdQInF4vIa+crc9kNpzOtg3dENd4nEHVu11tz32NsAHzXA5mEKrj71WhyDVHTHuAlfXfSWzVXe1V2thBQrfTokeMyuVxVW1llIJes0iJtoEOs0yJtokOs0qJtoaJc1FQ2XN9HwbUsD47hWEcdEdCM/rhbF0IpHKy7v17ECLL6bK4rW6TSAX5b9qVUkyYX9h/YcFonAyqsF/X0nlrZw57QTOGsDZ11An7TNLHKYRrfgl03sZY/SFrBIHp22trALyx5W9bcoWEwBNO0+2+l2sM9T0cLu9mOXbeyyD9s0HbHdHtE2SKwKWJchw74pVlex+ujdsWb4BL03tRP62dlO3jdiH323St/tpJvhk97hk5sM30ffrdK7hzf0Hn8l1n1rRTauu2O9AVeXSKZkwh0saOv0ot7xObhFLeIAnkWzxAAXn+cn7qmlSzLbFGOA6CtRsxDSTjFqdt6nBq87a3XpGRpVuzdRZa67660rNYpuleKGKltuM+etfiPvosJC3933Wmj8Z/Q9XKtPX3YK87C1py8PjLn7unmgLw/XD2TMXuuJ/8Vu0W24+L8Mx/B9zmNzDHOIaBw25yCwszxwzkDE1mS0F6VGoF+7l73bphdPoJW7vEooDhc8xWelZd564SgM4kCfN/VrsBD0GaQxbS0wQ9/ZsPBj67dUvEDWWPXjK/YX725KFvE8xTvGyrbHo509zOIlTvPseRKSWPEIC6uUQTbRp+MqaQXG1CCrYxWVp35245FflOelr8BlWFTp7pdlL64lVjz43yM9Rulxr9SjJMgzc+1BHIEuBo+gT37IKdZL5tqDcDlW7vrSI8eTR57pS48cFlhuKvP2sXzv4DjZ07wP/uQo128leqShm2fhyB66o27E5/qlYRARfLzitz3UrXVAGq+A2OoZUwBLtQufv+5DMB7g6ZuibVetvkFfvHqaZ/rSB1AiAoJWqciE0DGdXZqfEuw4jrEw1G8ns/Fof8+N8lU/I0sQEpJsWut0gOnOBtjhwivQ41G9fyFD6ivsNmqKfiYrg06v8WU/FI9EPUZbpH/iaPfilAPcRxXBlfmtzuJNdHVeWtCY1/ntrUnzR7h24810NBmPJn8Zbz0+GBSfDwefDH43uDeYDPYHjwd/HBwOXg/cwT8G/xx8N/jX5m82H28+2/y6gN76oOT8elD7bB79FxQTrzM=</latexit> <latexit sha1_base64="sg4BK8w5ytAcXmQyQ0tWWWn7/Y0=">AAAcmHicpVltc9y2Eb64b6n65qTfGnWGqcaukzmd706SJafjGY8Tj5upXauy7LgRJQ1ILknMgQQFgOc7seyX/pp+Tf9KvvSH9HsXIE/i61nTnkY8EPs8i8VisVzwnIRRqcbjf39w6wc//NGPf/LhTzd+9vNf/PJXtz/6+I3kqXDhtcsZF28dIoHRGF4rqhi8TQSQyGHwjTP7Usu/mYOQlMfHapnAaUSCmPrUJQq7zm//1lawUEZP5hEx23ZYCnlmqxAUyc9vb41HY/Ox2o1J2dh6PPjPd99/f+tPh+cffeLaHnfTCGLlMiLlyWScqNOMCEVdBvmGnUpIiDsjAZxgMyYRyNPMjJ9bd7DHs3wu8D9WlumtMjISSbmMHERGRIWyKdOdXbKTVPkHpxmNk1RB7BYD+SmzFLe0UyyPCnAVW2KDuIKirZYbEkFcha6rjWJsGi4Kgzc27ljGxRJtjSWuFk7bekdVaCWMK2R64OPCVNwrwMszETh5Nh4dDLUv9WVyMN55OJ3sPTh4MN3f3ZvkHcxiYUrq+Ip6A2YgAOI6tcoZP0QdRl++cafN5oLEwWrkSUF/sLs/3js4mO7sTR/uTiYHJfs95HLGuyW6a/WGntRLP9RtxTmTtYjJJE1jqhb1zkCQJKRuozdKmaKCvxs6nM8UceQQLykjYjH0GSeqHop60EcxFxFhkl7CaSZTx6dBY3QM6BC8oSPIDOoKMh+WcZRsk1TxumbJhbrr8gh3pcRIj4lyqIOQQ9wcLxO9CeUxPyy1hMskhFjmWSpYXtWSeD7u02FIPb3TZ3Kor8bPjyrRMbRcqqDaXSz90EJ91W4dhcYxEd5JnkBsFCruPiKMnWo7QAjw63OEOI1Qf4T7x2xSFIntYsk9C33LQNU3C3q84Y6MuC7uEblSYYchUXUOnV3WKQuJLdAM05AWjXG7RRGJvWI4TWEUV0UsMdHgmsuh5aEbhMlxcqQnSeMAewvpKNK5TW/eZxCDIMwkAdSjELVhx/CuVI9pEGNQx0Z+MjnNTKqUbrY1yfM6DNsJpgsTiZg8sW3HPEHjHczFM9uhgZzRpNYXcxp76IqGJoxPOtdrUYwY4iJkoVLJF/fvG9GIi+A+RvN9NKIwSCmc9Fs6/0Kb1dCmG7CyHt0QYAokIrOl75OIsqUtMdslSod88zlgElWhsuIonX1xV1r1YWiUa/UqFFFGmzZ41PevxV5TDEGeZTCyh8Eo/3tDRjFzZBRl0JbBRUrnhOnZ4XxoBBfG0L9ifMTcisjSgTphCQkicXelArQx2jvNFGlZthuCa7ZFy5kYQx73+3UUCRpVEKlaZFx66KcaZyNT4Txk6fJXJtjrWi4uLlKCUNt8W8VX3sJcgVaoHtg17gpYIHH4w3ApqStXK14n4wRWMaVCl7DsRX5uAqhjb+iJ17Av8/MOGAtEHfZ8jUrhNVXaDHx1b2tiCxqE6rMGwRHXEfjkqKkuSjCG6mujr46fJfn58VmxzbKISr00LTI0yU/fy8HHlbzIzfeZ7ZEgAMyEeNOAYY2C4fbqvFSm74rQeI0PwcaKwNxsgwzetMJ2JZq1ZdFK9qItC1ayZ22ZWsmO2zLfKUT43dzO16KzbLudrZJSnLSZ16IVE93wFRZcgjqpyfJWc7/pZ3l+Mq1EyZ9z+1P8KyPFsiPqeQz+Zm1Nrauw0WpBYGZRdI6pBHWZZ02qiOKi4fPEA1GM4GOpaJm8ryhmSYzY6t205b4mUefIklU025ROztm0ysqQdtZi+i0iMEVWvKI9LRz6hDOve8Njj1ccCWqxbhlBwVidGZrja0Sc5v00FHZQIJGU8XgNb07ECtTBXzSY5Y5edGEvu7GXXdhlN3bZhZ13Y+ddWNWNVZ32guDd8HGxkC9AhdxrrKFLsKi8KmK+1Hd2WVvVgYIzcQ080nfdQInF4vIa+crc9kNpzOtg3dENd4nEHVu11tz32NsAHzXA5mEKrj71WhyDVHTHuAlfXfSWzVXe1V2thBQrfTokeMyuVxVW1llIJes0iJtoEOs0yJtokOs0qJtoaJc1FQ2XN9HwbUsD47hWEcdEdCM/rhbF0IpHKy7v17ECLL6bK4rW6TSAX5b9qVUkyYX9h/YcFonAyqsF/X0nlrZw57QTOGsDZ11An7TNLHKYRrfgl03sZY/SFrBIHp22trALyx5W9bcoWEwBNO0+2+l2sM9T0cLu9mOXbeyyD9s0HbHdHtE2SKwKWJchw74pVlex+ujdsWb4BL03tRP62dlO3jdiH323St/tpJvhk97hk5sM30ffrdK7hzf0Hn8l1n1rRTauu2O9AVeXSKZkwh0saOv0ot7xObhFLeIAnkWzxAAXn+cn7qmlSzLbFGOA6CtRsxDSTjFqdt6nBq87a3XpGRpVuzdRZa67660rNYpuleKGKltuM+etfiPvosJC3933Wmj8Z/Q9XKtPX3YK87C1py8PjLn7unmgLw/XD2TMXuuJ/8Vu0W24+L8Mx/B9zmNzDHOIaBw25yCwszxwzkDE1mS0F6VGoF+7l73bphdPoJW7vEooDhc8xWelZd564SgM4kCfN/VrsBD0GaQxbS0wQ9/ZsPBj67dUvEDWWPXjK/YX725KFvE8xTvGyrbHo509zOIlTvPseRKSWPEIC6uUQTbRp+MqaQXG1CCrYxWVp35245FflOelr8BlWFTp7pdlL64lVjz43yM9Rulxr9SjJMgzc+1BHIEuBo+gT37IKdZL5tqDcDlW7vrSI8eTR57pS48cFlhuKvP2sXzv4DjZ07wP/uQo128leqShm2fhyB66o27E5/qlYRARfLzitz3UrXVAGq+A2OoZUwBLtQufv+5DMB7g6ZuibVetvkFfvHqaZ/rSB1AiAoJWqciE0DGdXZqfEuw4jrEw1G8ns/Fof8+N8lU/I0sQEpJsWut0gOnOBtjhwivQ41G9fyFD6ivsNmqKfiYrg06v8WU/FI9EPUZbpH/iaPfilAPcRxXBlfmtzuJNdHVeWtCY1/ntrUnzR7h24810NBmPJn8Zbz0+GBSfDwefDH43uDeYDPYHjwd/HBwOXg/cwT8G/xx8N/jX5m82H28+2/y6gN76oOT8elD7bB79FxQTrzM=</latexit> <latexit sha1_base64="cLB/gHcLXKsvdN1Ss3kTuhimZm0=">AAAcmHicpVltc9u4EdZd367uW6791ktnePU4zd3IiiTLiX2dzGRyl0lvJml8jpNLa9oekFySGIEEDYCKZJb90l/Tr+2v6b/pAqRsviqeVh5TIPZ5FovFYrmgnIRRqcbj/3z08Q9++KMf/+STn2797Oe/+OWv7nz667eSp8KFNy5nXLxziARGY3ijqGLwLhFAIofB9878ay3/fgFCUh6fqFUCZxEJYupTlyjsurjzO1vBUhk9mUfEfNdhKeSZrUJQJL+4sz0ejc3HajcmZWN7UH6OLj79zLU97qYRxMplRMrTyThRZxkRiroM8i07lZAQd04COMVmTCKQZ5kZP7d2sMezfC7wP1aW6a0yMhJJuYocREZEhbIp051dstNU+QdnGY2TVEHsFgP5KbMUt7RTLI8KcBVbYYO4gqKtlhsSQVyFrquNYmwaLguDt7Z2LONiibbGElcLp229pyq0EsYVMj3wcWEq7hXg5ZkInDwbjw6G2pf6MjkY7x1OJ/sPDx5OH832J3kHs1iYkjq+pt6CGQiAuE6tcsaHqMPoy7d22mwuSBysR54U9IezR+P9g4Pp3v70cDaZHJTsD5DLGc9KdNfqDT2pl36o24pzJmsRk0maxlQt652BIElI3UZvlDJFBX8/dDifK+LIIV5SRsRy6DNOVD0U9aCPYy4iwiS9grNMpo5Pg8boGNAheENHkDnUFWQ+rOIo2SWp4nXNkgt1z+UR7kqJkR4T5VAHIUe4OV4lehPKE35UaglXSQixzLNUsLyqJfF83KfDkHp6p8/lUF+Nnx9XomNouVRBtbtY+qGF+qrdOgqNYyK8kzyB2ChU3H1MGDvTdoAQ4NfnCHEaof4I94/ZpCgSu8WSexb6loGqbxb0eMMdGXFd3CNyrcIOQ6LqHDq/qlOWElugGaYhLRrjdosiEnvFcJrCKK6KWGGiwTWXQ8tDNwiT4+RIT5LGAfYW0lGkc5vevM8hBkGYSQKoRyFqy47hfake0yDGoI6N/HRylplUKd1se5LndRi2E0wXJhIxeWLbjnmCxjuYi+e2QwM5p0mtL+Y09tAVDU0Yn3Sh16IYMcRFyEKlkq8ePDCiERfBA4zmB2hEYZBSOOl3dPGVNquhTTdgbT26IcAUSERmS98nEWUrW2K2S5QO+eZzwCSqQmXFUTr74q606sPQKNfqVSiijDZt8Kjv34i9phiCPMtgZA+DUf73hoxi5sgoyqAtg8uULgjTs8P50AgujaF/wfiIuRWRlQN1wgoSROLuSgVoY7R3minSsmw3BNdsi5YzMYY87vfrKBI0qiBStci49NBPNc5GpsJ5yNLlr02w17VcXl6mBKG2+baKr7yFuQatUT2wG9w1sEDi8EfhSlJXrle8TsYJrGNKhS5h2cv8wgRQx97QE69hX+UXHTAWiDrsxQaVwmuqtBn46v72xBY0CNUXDYIjbiLw6XFTXZRgDNXXRl8dP0vyi5PzYptlEZV6aVpkaJKffZCDjyt5mZvvc9sjQQCYCfGmAcMaBcPt9UWpTN8VofEGH4KNFYGF2QYZvG2F7Vo0b8uitexlWxasZc/bMrWWnbRlvlOI8Lu5nW9E59luO1slpThpM29Eaya64RssuAR1UpPlreZ+08/y/HRaiZI/5/bn+FdGimVH1PMY/M3anlrXYaPVgsDMougCUwnqMs+aVBHFRcPniQeiGMHHUtEyeV9RzJIYsdW7act9TaLOkSWraLYpnZzzaZWVIe28xfRbRGCKrHlFe1o49ClnXveGxx6vOBLUYt0ygoKxPjM0x9eIOM37aSjsoEAiKePxBt6CiDWog79sMMsdvezCXnVjr7qwq27sqgu76MYuurCqG6s67QXBu+HjYiFfggq511hDl2BReV3EfK3v7LK2qgMFZ+IGeKzvuoESi8XVDfK1ue2H0pjXwbqjG+4SiTu2aq2577G3AT5ugM3DFFx96rU4BqnojnETvrroLZvrvKu7WgkpVvp0SPCYXa8qrKyzkEo2aRC30SA2aZC30SA3aVC30dAuayoarm6j4a8tDYzjWkUcE9Gt/LheFEMrHq24vN/GCrD4bq4oWqfTAH5Z9udWkSSX9h/bc1gmAiuvFvQPnVjawl3QTuC8DZx3AX3SNrPIYRrdgl81sVc9SlvAInl02trCLi17WNXfomAxBdC0+3yv28E+T0ULO+vHrtrYVR+2aTpiuz2ibZBYFbAuQ4Z9U6yuYvXRu2fN8Ql6f2on9IvzvbxvxD76rEqfddLN8Env8Mlthu+jz6r07uENvcdfifXAWpON63ast+DqEsmUTLiDBW2dXtR7vgC3qEUcwLNolhjg8sv81D2zdElmm2IMEH0tahZC2ilGzd6H1OB1b6MuPUOjanYbVeY622xdqVF0qxS3VNlymzlv9Rt5DxUW+u590ELjP6PvcKM+fdkrzMPWvr48NOY+0s0DfTncPJAxe6Mn/he7Rbfh4v8yHMP3BY/NMcwhonHYXIDAzvLAOQcRW5PRfpQagX7tXvbuml48gVbu8iqhOFzwFJ+VlnnrhaMwiAN93tSvwULQZ5DGtLXADL2zZeHH1m+peIGsserHV+wv3t2ULOJ5ineMle2OR3v7mMVLnObZiyQkseIRFlYpg2yiT8dV0hqMqUFWxyoqT/3sxiO/KM9L34DLsKjS3a/KXlxLrHjwv0d6gtKTXqlHSZBn5tqDOAZdDB5Dn/yIU6yXzLUH4XKs3PWlR44njzzTlx45LLHcVObtY/newXGyZ3kf/Olxrt9K9EhDN8/CkT10R92IL/VLwyAi+HjFb3uoW5uANF4DsdUzpgCWahe+eNOHYDzA0zdF265bfYO+fP0sz/SlD6BEBAStUpEJoRM6vzI/JdhxHGNhqN9OZuPRo303ytf9jKxASEiyaa3TAaY7G2CHC69Aj0f1/qUMqa+w26gp+pmsDDq9wZf9UDwS9Rhtkf6Jo92LUw5wH1UE1+a3Oos30dV5aUFjXhd3tifNH+HajbfT0WQ8mnw33n5yUP5A98ngs8HvB/cHk8GjwZPBnwZHgzcDd/CPwT8H/xr8++5v7z65+/zutwX0449Kzm8Gtc/d4/8CUMSrVw==</latexit> arg min g L[g] <latexit sha1_base64="K5zdKfNQlfWV+Iu2lZ+kbdAR2qQ=">AAAcqHicpVnrctu4Fdbu9rJ1b9nuz/gHtx6n2YysSLIdO9vJTCa7mW1nksZ1nMvWtD0geUhiBBI0ACqSWfYl+jT92z5FX6NP0AOQsnlVPK08pkCc7zs4ODg4PKCchFGpxuN/f/LpZz/68U9++vnPNn7+i1/+6td3vvjNW8lT4cIblzMu3jtEAqMxvFFUMXifCCCRw+CdM/tWy9/NQUjK4xO1TOAsIkFMfeoShV0Xd3a2bQULZRRlHhGzHYelkGe2CkGRfMMmIohofBFYL06Ds4s7W+PR2HysdmNSNrae3v3PswF+ji6+uOvaHnfTCGLlMiLl6WScqLOMCEVdBqg/lZAQd0YCOMVmTCKQZ5kxJ7e2scezfC7wP1aW6a0yMhJJuYwcREZEhbIp051dstNU+YdnGY2TVEHsFgP5KbMUt7STLI8KcBVbYoO4gqKtlhsSQVyFrqyNYmwaLgqDNza2LeNyibbGElcPp219oCq0EsYVMj3wcaEq3hbg5ZkInDwbjw6H2pf6Mjkc7z6eTvYfHT6aHuztT/IOZrFOJXV8Tb0FMxAAcZ1a5Ywfow6jL9/YbrO5IHGwGnlS0B/tHYz3Dw+nu/vTx3uTyWHJ/gi5nPFeie5avaEn9dIPdVtxzmQtYjJJ05iqRb0zECQJqdvojVKmqOAfhg7nM0UcOcRLyohYDH3GiaqHoh70ScxFRJikV3CWydTxadAYHQM6BG/oCDKDuoLMh2UcJTskVbyuWXKh7rk8wl0qMdJjohzqIOQIN8erRG9KecKPSi3hMgkhlnmWCpZXtSSej9t2GFJP7/yZHOqr8fOTSnQMLZcqqHYXSz+0UF+1W0ehcUyEd5InEBuFirtPCGNn2g4QAvz6HCFOI9Qf4f4xmxRFYqdYcs9C3zJQ9c2CHm+4IyOui3tErlTYYUhUnUNnV3XKQmILNMM0pEVj3G5RRGKvGE5TGMVVEUtMNLjmcmh56AZhcp4c6UnSOMDeQjqKTKrDzfs9xCAIM0kA9ShEbdgxfCjVY1bEGNSxkZ9OzjKTOaWbbU3yvA7DdoLpwkQi5lJs2zFP0HgHc/PMdmggZzSp9cWcxh66oqEJ45PO9VoUI4a4CFmoVPLNw4dGNOIieIjR/BCNKAxSCif9ns6/0WY1tOkGrKxHNwSYAonIbOn7JKJsaUvMdonSId98LJhEVaisOEpnX9yVVn0YGuVavQpFlNGmDR71/Rux1xRDkGcZjOxhMMr/1pBRzBwZRRm0ZXCZ0jlhenY4HxrBpTH0B4yPmFsRWTpQJywhQSTurlSANkZ7p5kiLct2Q3DNtmg5E2PI436/jiJBowoiVYuMSw/9VONsZCqchyxd/toEe13L5eVlShBqm2+r+MpbmGvQCtUDu8FdAwskDn8ULiV15WrF62ScwCqmVOgSlr3ML0wAdewNPfEa9lV+0QFjgajDXqxRKbymSpuBr+5vTWxBg1B93SA44iYCnx031UUJxlB9bfTV8bMkvzg5L7ZZFlGpl6ZFhib5+Uc5+LiSl7n5Prc9EgSAmRBvGjCsUTDcXl+UyvRdERpv8CHYWBGYm22QwdtW2K5Es7YsWsletmXBSvZ9W6ZWspO2zHcKEX43t/ON6DzbaWerpBQnbeaNaMVEN3yHBZegTmqyvNXcb/pZnp9OK1Hyp9z+Cv/KSLHsiHoeg79aW1PrOmy0WhCYWRSdYypBXeZZkyqiuGj4PPFAFCP4WCpaJu8rilkSI7Z6N225r0nUObJkFc02pZNzPq2yMqSdt5h+iwhMkRWvaE8Lhz7jzOve8NjjFSeEWqxbRlAwVkeI5vgaEad5Pw2FHRRIJGU8XsObE7ECdfAXDWa5oxdd2Ktu7FUXdtmNXXZh593YeRdWdWNVp70geDd8XCzkS1Ah9xpr6BIsKq+LmG/1nV3WVnWg4EzcAI/1XTdQYrG4vEG+Nrf9UBrzOlh3dMNdInHHVq019z32NsDHDbB5mIKrT8EWxyAV3TFuwlcXvWVzlXd1VyshxUqfDgkeu+tVhZV1FlLJOg3iNhrEOg3yNhrkOg3qNhraZU1Fw9VtNPylpYFxXKuIYyK6lR9Xi2JoxaMVl/ePsQIsvpsritbpNIBflv2VVSTJhf379hwWicDKqwX9XSeWtnAXtBM4awNnXUCftM0scphGt+BXTexVj9IWsEgenba2sAvLHlb1tyhYTAE07T7f7Xawz1PRwu71Y5dt7LIP2zQdsd0e0TZIrApYlyHDvilWV7H66N21ZvgEvT+1E/r1+W7eN2Iffa9K3+ukm+GT3uGT2wzfR9+r0ruHN/QefyXWQ2tFNq7btt6Cq0skUzLhDha0dXpRH/gc3KIWcQDPolligIsH+al7ZumSzDbFGCD6WtQshLRTjJrdj6nB6+5aXXqGRtXebVSZ695660qNoluluKXKltvMeavfyHuosNB376MWGv8ZfY/X6tOX3cI8bO3ryyNj7oFuHurL4/UDGbPXeuJ/sVt0Gy7+L8MxfF/w2BzDHCIah805COwsD5wzELE1Ge1HqRHo1/Bl747pxRNo5S6vEorDBU/xWWmZt144CoM40OdN/RosBH0GaUxbC8zQ2xsWfmz9looXyBqrfnzF/uLdTckinqd4x1jZzni0u49ZvMRpnj1PQhIrHmFhlTLIJvp0XCWtwJgaZHWsovLUz2488ovyvPQduAyLKt39quzFtcSKB/97pCcoPemVepQEeWauPYhj0MXgMfTJjzjFeslcexAux8pdX3rkePLIM33pkcMCy01l3j6W7x0cJ3ue98GfHef6rUSPNHTzLBzZQ3fUjXiQmd9sCD5e8dse6tY6II1XQGz1jCmApdqFL970IRgP8PRN0bbrVt+gL18/zzN96QMoEQFBq1RkQuiEzq7MTwl2HMdYGOq3k9l4dLDvRvmqn5ElCAlJNq11OsB0ZwPscOEV6PGo3r+QIfUVdhs1RT+TlUGnN/iyH4pHoh6jLdI/cbR7ccoB7qOK4Nr8VmfxJro6Ly1ozOviztak+SNcu/F2OpqMR5M/j7eeHg6Kz+eDu4PfDu4PJoODwdPBHwZHgzcDd/D3wT8G/xz8a/PB5tHmu80fCuinn5ScLwe1z6bzXwx2suA=</latexit> <latexit sha1_base64="ApOBYqsfgOriMeFGC7CAo7I3urI=">AAAcqHicpVlfc9y2Eb8kbZMq/eOkj/YDU41cx3M6350kW07HMx4nnrQzdq3Kku1UlDQguSQxBxIUAJ7vxLKfoG/9NH1tP0W/Rp/70AXIk/j3rGlPIx6I/f0Wi8ViueA5CaNSjcf/+ujjT3704598+tlPNz7/2c9/8ctbX3z5RvJUuHDscsbFO4dIYDSGY0UVg3eJABI5DN46s2+1/O0chKQ8PlLLBE4jEsTUpy5R2HV+a3vLVrBQRlHmETHbdlgKeWarEBTJN2wigojG54H14iQ4Pb+1OR6NzcdqNyZlY/Pp7X8/+/Tzv/7n4PyL267tcTeNIFYuI1KeTMaJOs2IUNRlgPpTCQlxZySAE2zGJAJ5mhlzcmsLezzL5wL/Y2WZ3iojI5GUy8hBZERUKJsy3dklO0mVv3+a0ThJFcRuMZCfMktxSzvJ8qgAV7ElNogrKNpquSERxFXoytooxqbhojB4Y2PLMi6XaGsscfVw2tZ7qkIrYVwh0wMfF6ribQFenonAybPxaH+ofakvk/3xzuPpZO/h/sPpo929Sd7BLNappI6vqDdgBgIgrlOrnPFj1GH05RtbbTYXJA5WI08K+sPdR+O9/f3pzt708e5ksl+yP0AuZ7xbortWb+hJvfRD3VacM1mLmEzSNKZqUe8MBElC6jZ6o5QpKvj7ocP5TBFHDvGSMiIWQ59xouqhqAd9EnMRESbpJZxmMnV8GjRGx4AOwRs6gsygriDzYRlHyTZJFa9rllyouy6PcJdKjPSYKIc6CDnAzfEq0ZtSHvGDUku4TEKIZZ6lguVVLYnn47YdhtTTO38mh/pq/PykEh1Dy6UKqt3F0g8t1Fft1lFoHBPhneQJxEah4u4TwtiptgOEAL8+R4jTCPVHuH/MJkWR2C6W3LPQtwxUfbOgxxvuyIjr4h6RKxV2GBJV59DZZZ2ykNgCzTANadEYt1sUkdgrhtMURnFVxBITDa65HFoeukGYnCdHepI0DrC3kI4ik+pw834PMQjCTBJAPQpRG3YM70v1mBUxBnVs5CeT08xkTulmm5M8r8OwnWC6MJGIuRTbdswTNN7B3DyzHRrIGU1qfTGnsYeuaGjC+KRzvRbFiCEuQhYqlXzz4IERjbgIHmA0P0AjCoOUwkm/o/NvtFkNbboBK+vRDQGmQCIyW/o+iShb2hKzXaJ0yDcfCyZRFSorjtLZF3elVR+GRrlWr0IRZbRpg0d9/1rsNcUQ5FkGI3sYjPK/NGQUM0dGUQZtGVykdE6Ynh3Oh0ZwYQz9AeMj5lZElg7UCUtIEIm7KxWgjdHeaaZIy7LdEFyzLVrOxBjyuN+vo0jQqIJI1SLj0kM/1TgbmQrnIUuXvzbBXtdycXGREoTa5tsqvvIW5gq0QvXArnFXwAKJwx+ES0lduVrxOhknsIopFbqEZS/zcxNAHXtDT7yGfZWfd8BYIOqwF2tUCq+p0mbgq3ubE1vQIFRfNwiOuI7AZ4dNdVGCMVRfG311/CzJz4/Oim2WRVTqpWmRoUl+/kEOPq7kRW6+z2yPBAFgJsSbBgxrFAy31+elMn1XhMYxPgQbKwJzsw0yeNMK25Vo1pZFK9nLtixYyb5vy9RKdtSW+U4hwu/mdr4WnWXb7WyVlOKkzbwWrZjohu+w4BLUSU2Wt5r7TT/L85NpJUr+kNtf4V8ZKZYdUc9j8Gdrc2pdhY1WCwIzi6JzTCWoyzxrUkUUFw2fJx6IYgQfS0XL5H1FMUtixFbvpi33NYk6R5asotmmdHLOplVWhrSzFtNvEYEpsuIV7Wnh0Geced0bHnu84oRQi3XLCArG6gjRHF8j4jTvp6GwgwKJpIzHa3hzIlagDv6iwSx39KILe9mNvezCLruxyy7svBs778KqbqzqtBcE74aPi4V8CSrkXmMNXYJF5VUR862+s8vaqg4UnIlr4KG+6wZKLBaX18jX5rYfSmNeB+uObrhLJO7YqrXmvsfeBviwATYPU3D1KdjiGKSiO8ZN+Oqit2yu8q7uaiWkWOnTIcFjd72qsLLOQipZp0HcRINYp0HeRINcp0HdREO7rKlouLyJhj+1NDCOaxVxTEQ38uNqUQyteLTi8v4+VoDFd3NF0TqdBvDLsr+yiiS5sH/bnsMiEVh5taC/6cTSFu6cdgJnbeCsC+iTtplFDtPoFvyyib3sUdoCFsmj09YWdmHZw6r+FgWLKYCm3Wc73Q72eSpa2N1+7LKNXfZhm6Yjttsj2gaJVQHrMmTYN8XqKlYfvTvWDJ+g96Z2Qr8+28n7Ruyj71bpu510M3zSO3xyk+H76LtVevfwht7jr8R6YK3IxnVb1htwdYlkSibcwYK2Ti/qPZ+DW9QiDuBZNEsMcHE/P3FPLV2S2aYYA0RfiZqFkHaKUbPzITV43VmrS8/QqNq9iSpz3V1vXalRdKsUN1TZcps5b/UbeRcVFvruftBC4z+j7/FaffqyU5iHrT19eWjMfaSb+/ryeP1Axuy1nvhf7Bbdhov/y3AM3xc8Nscwh4jGYXMOAjvLA+cMRGxNRntRagT6NXzZu2168QRaucurhOJwwVN8VlrmrReOwiAO9HlTvwYLQZ9BGtPWAjP01oaFH1u/peIFssaqH1+xv3h3U7KI5yneMVa2PR7t7GEWL3GaZ8+TkMSKR1hYpQyyiT4dV0krMKYGWR2rqDz1sxuP/KI8L30HLsOiSne/KntxLbHiwf8e6RFKj3qlHiVBnplrD+IQdDF4CH3yA06xXjLXHoTLsXLXlx45njzyTF965LDAclOZt4/lewfHyZ7nffBnh7l+K9EjDd08C0f20B11I+5n5jcbgo9X/LaHurUOSOMVEFs9YwpgqXbhi+M+BOMBnr4p2nbV6hv05evneaYvfQAlIiBolYpMCB3R2aX5KcGO4xgLQ/12MhuPHu25Ub7qZ2QJQkKSTWudDjDd2QA7XHgFejyq9y9kSH2F3UZN0c9kZdDpNb7sh+KRqMdoi/RPHO1enHKA+6giuDK/1Vm8ia7OSwsa8zq/tTlp/gjXbryZjibj0eSP482n+4Pi89ng9uDXg3uDyeDR4Ongd4ODwfHAHfxt8PfBPwb/vHP/zsGdt3d+KKAff1RyfjWofe44/wW/t7R6</latexit> <latexit sha1_base64="ApOBYqsfgOriMeFGC7CAo7I3urI=">AAAcqHicpVlfc9y2Eb8kbZMq/eOkj/YDU41cx3M6350kW07HMx4nnrQzdq3Kku1UlDQguSQxBxIUAJ7vxLKfoG/9NH1tP0W/Rp/70AXIk/j3rGlPIx6I/f0Wi8ViueA5CaNSjcf/+ujjT3704598+tlPNz7/2c9/8ctbX3z5RvJUuHDscsbFO4dIYDSGY0UVg3eJABI5DN46s2+1/O0chKQ8PlLLBE4jEsTUpy5R2HV+a3vLVrBQRlHmETHbdlgKeWarEBTJN2wigojG54H14iQ4Pb+1OR6NzcdqNyZlY/Pp7X8/+/Tzv/7n4PyL267tcTeNIFYuI1KeTMaJOs2IUNRlgPpTCQlxZySAE2zGJAJ5mhlzcmsLezzL5wL/Y2WZ3iojI5GUy8hBZERUKJsy3dklO0mVv3+a0ThJFcRuMZCfMktxSzvJ8qgAV7ElNogrKNpquSERxFXoytooxqbhojB4Y2PLMi6XaGsscfVw2tZ7qkIrYVwh0wMfF6ribQFenonAybPxaH+ofakvk/3xzuPpZO/h/sPpo929Sd7BLNappI6vqDdgBgIgrlOrnPFj1GH05RtbbTYXJA5WI08K+sPdR+O9/f3pzt708e5ksl+yP0AuZ7xbortWb+hJvfRD3VacM1mLmEzSNKZqUe8MBElC6jZ6o5QpKvj7ocP5TBFHDvGSMiIWQ59xouqhqAd9EnMRESbpJZxmMnV8GjRGx4AOwRs6gsygriDzYRlHyTZJFa9rllyouy6PcJdKjPSYKIc6CDnAzfEq0ZtSHvGDUku4TEKIZZ6lguVVLYnn47YdhtTTO38mh/pq/PykEh1Dy6UKqt3F0g8t1Fft1lFoHBPhneQJxEah4u4TwtiptgOEAL8+R4jTCPVHuH/MJkWR2C6W3LPQtwxUfbOgxxvuyIjr4h6RKxV2GBJV59DZZZ2ykNgCzTANadEYt1sUkdgrhtMURnFVxBITDa65HFoeukGYnCdHepI0DrC3kI4ik+pw834PMQjCTBJAPQpRG3YM70v1mBUxBnVs5CeT08xkTulmm5M8r8OwnWC6MJGIuRTbdswTNN7B3DyzHRrIGU1qfTGnsYeuaGjC+KRzvRbFiCEuQhYqlXzz4IERjbgIHmA0P0AjCoOUwkm/o/NvtFkNbboBK+vRDQGmQCIyW/o+iShb2hKzXaJ0yDcfCyZRFSorjtLZF3elVR+GRrlWr0IRZbRpg0d9/1rsNcUQ5FkGI3sYjPK/NGQUM0dGUQZtGVykdE6Ynh3Oh0ZwYQz9AeMj5lZElg7UCUtIEIm7KxWgjdHeaaZIy7LdEFyzLVrOxBjyuN+vo0jQqIJI1SLj0kM/1TgbmQrnIUuXvzbBXtdycXGREoTa5tsqvvIW5gq0QvXArnFXwAKJwx+ES0lduVrxOhknsIopFbqEZS/zcxNAHXtDT7yGfZWfd8BYIOqwF2tUCq+p0mbgq3ubE1vQIFRfNwiOuI7AZ4dNdVGCMVRfG311/CzJz4/Oim2WRVTqpWmRoUl+/kEOPq7kRW6+z2yPBAFgJsSbBgxrFAy31+elMn1XhMYxPgQbKwJzsw0yeNMK25Vo1pZFK9nLtixYyb5vy9RKdtSW+U4hwu/mdr4WnWXb7WyVlOKkzbwWrZjohu+w4BLUSU2Wt5r7TT/L85NpJUr+kNtf4V8ZKZYdUc9j8Gdrc2pdhY1WCwIzi6JzTCWoyzxrUkUUFw2fJx6IYgQfS0XL5H1FMUtixFbvpi33NYk6R5asotmmdHLOplVWhrSzFtNvEYEpsuIV7Wnh0Geced0bHnu84oRQi3XLCArG6gjRHF8j4jTvp6GwgwKJpIzHa3hzIlagDv6iwSx39KILe9mNvezCLruxyy7svBs778KqbqzqtBcE74aPi4V8CSrkXmMNXYJF5VUR862+s8vaqg4UnIlr4KG+6wZKLBaX18jX5rYfSmNeB+uObrhLJO7YqrXmvsfeBviwATYPU3D1KdjiGKSiO8ZN+Oqit2yu8q7uaiWkWOnTIcFjd72qsLLOQipZp0HcRINYp0HeRINcp0HdREO7rKlouLyJhj+1NDCOaxVxTEQ38uNqUQyteLTi8v4+VoDFd3NF0TqdBvDLsr+yiiS5sH/bnsMiEVh5taC/6cTSFu6cdgJnbeCsC+iTtplFDtPoFvyyib3sUdoCFsmj09YWdmHZw6r+FgWLKYCm3Wc73Q72eSpa2N1+7LKNXfZhm6Yjttsj2gaJVQHrMmTYN8XqKlYfvTvWDJ+g96Z2Qr8+28n7Ruyj71bpu510M3zSO3xyk+H76LtVevfwht7jr8R6YK3IxnVb1htwdYlkSibcwYK2Ti/qPZ+DW9QiDuBZNEsMcHE/P3FPLV2S2aYYA0RfiZqFkHaKUbPzITV43VmrS8/QqNq9iSpz3V1vXalRdKsUN1TZcps5b/UbeRcVFvruftBC4z+j7/FaffqyU5iHrT19eWjMfaSb+/ryeP1Axuy1nvhf7Bbdhov/y3AM3xc8Nscwh4jGYXMOAjvLA+cMRGxNRntRagT6NXzZu2168QRaucurhOJwwVN8VlrmrReOwiAO9HlTvwYLQZ9BGtPWAjP01oaFH1u/peIFssaqH1+xv3h3U7KI5yneMVa2PR7t7GEWL3GaZ8+TkMSKR1hYpQyyiT4dV0krMKYGWR2rqDz1sxuP/KI8L30HLsOiSne/KntxLbHiwf8e6RFKj3qlHiVBnplrD+IQdDF4CH3yA06xXjLXHoTLsXLXlx45njzyTF965LDAclOZt4/lewfHyZ7nffBnh7l+K9EjDd08C0f20B11I+5n5jcbgo9X/LaHurUOSOMVEFs9YwpgqXbhi+M+BOMBnr4p2nbV6hv05evneaYvfQAlIiBolYpMCB3R2aX5KcGO4xgLQ/12MhuPHu25Ub7qZ2QJQkKSTWudDjDd2QA7XHgFejyq9y9kSH2F3UZN0c9kZdDpNb7sh+KRqMdoi/RPHO1enHKA+6giuDK/1Vm8ia7OSwsa8zq/tTlp/gjXbryZjibj0eSP482n+4Pi89ng9uDXg3uDyeDR4Ongd4ODwfHAHfxt8PfBPwb/vHP/zsGdt3d+KKAff1RyfjWofe44/wW/t7R6</latexit> <latexit sha1_base64="Y+642ZFyiyZWQmFYdFZi+qnOJts=">AAAcqHicpVltc9y2Eb4kfUnVNyf9GH1gqpHreE7nu5NkS+l4JuPEk3bGrlVZsp2KkgYklyTmQIICwPOdWPZP9Nf0a/sr+m+6AHkSX8+a9DTigdjnWSwWi+WC5ySMSjUe//ejjz/5yU9/9vNPf7Hxy1/9+je/vffZ528kT4ULpy5nXLxziARGYzhVVDF4lwggkcPgrTP7VsvfzkFIyuMTtUzgPCJBTH3qEoVdl/d2tm0FC2UUZR4Rsx2HpZBntgpBkXzDJiKIaHwZWC/OgvPLe1vj0dh8rHZjUja2BuXn6PKzL1zb424aQaxcRqQ8m4wTdZ4RoajLAPWnEhLizkgAZ9iMSQTyPDPm5NY29niWzwX+x8oyvVVGRiIpl5GDyIioUDZlurNLdpYq/+A8o3GSKojdYiA/ZZbilnaS5VEBrmJLbBBXULTVckMiiKvQlbVRjE3DRWHwxsa2ZVwu0dZY4urhtK33VIVWwrhCpgc+LlTF2wK8PBOBk2fj0cFQ+1JfJgfj3cPpZP/xwePpk739Sd7BLNappI5vqHdgBgIgrlOrnPEh6jD68o3tNpsLEgerkScF/fHek/H+wcF0d396uDeZHJTsD5DLGe+V6K7VG3pSL/1QtxXnTNYiJpM0jala1DsDQZKQuo3eKGWKCv5+6HA+U8SRQ7ykjIjF0GecqHoo6kGfxlxEhEl6DeeZTB2fBo3RMaBD8IaOIDOoK8h8WMZRskNSxeuaJRfqvssj3KUSIz0myqEOQo5wc7xK9KaUJ/yo1BIukxBimWepYHlVS+L5uG2HIfX0zp/Job4aPz+tRMfQcqmCanex9EML9VW7dRQax0R4J3kCsVGouPuUMHau7QAhwK/PEeI0Qv0R7h+zSVEkdool9yz0LQNV3yzo8YY7MuK6uEfkSoUdhkTVOXR2XacsJLZAM0xDWjTG7RZFJPaK4TSFUVwVscREg2suh5aHbhAm58mRniSNA+wtpKPIpDrcvN9DDIIwkwRQj0LUhh3D+1I9ZkWMQR0b+dnkPDOZU7rZ1iTP6zBsJ5guTCRiLsW2HfMEjXcwN89shwZyRpNaX8xp7KErGpowPulcr0UxYoiLkIVKJV8/emREIy6CRxjNj9CIwiClcNLv6PxrbVZDm27Aynp0Q4ApkIjMlr5PIsqWtsRslygd8s3HgklUhcqKo3T2xV1p1YehUa7Vq1BEGW3a4FHfvxV7TTEEeZbByB4Go/wfDRnFzJFRlEFbBlcpnROmZ4fzoRFcGUN/wPiIuRWRpQN1whISROLuSgVoY7R3minSsmw3BNdsi5YzMYY87vfrKBI0qiBStci49NBPNc5GpsJ5yNLlr02w17VcXV2lBKG2+baKr7yFuQGtUD2wW9wNsEDi8EfhUlJXrla8TsYJrGJKhS5h2cv80gRQx97QE69hX+WXHTAWiDrsxRqVwmuqtBn46sHWxBY0CNVXDYIjbiPw2XFTXZRgDNXXRl8dP0vyy5OLYptlEZV6aVpkaJKff5CDjyt5lZvvC9sjQQCYCfGmAcMaBcPt9WWpTN8VoXGKD8HGisDcbIMM3rTCdiWatWXRSvayLQtWsu/bMrWSnbRlvlOI8Lu5nW9FF9lOO1slpThpM29FKya64TssuAR1UpPlreZ+08/y/GxaiZK/5PaX+FdGimVH1PMY/N3amlo3YaPVgsDMougcUwnqMs+aVBHFRcPniQeiGMHHUtEyeV9RzJIYsdW7act9TaLOkSWraLYpnZyLaZWVIe2ixfRbRGCKrHhFe1o49BlnXveGxx6vOCHUYt0ygoKxOkI0x9eIOM37aSjsoEAiKePxGt6ciBWog79oMMsdvejCXndjr7uwy27ssgs778bOu7CqG6s67QXBu+HjYiFfggq511hDl2BReVPEfKvv7LK2qgMFZ+IWeKzvuoESi8XlLfK1ue2H0pjXwbqjG+4SiTu2aq2577G3AT5ugM3DFFx9CrY4BqnojnETvrroLZurvKu7WgkpVvp0SPDYXa8qrKyzkErWaRB30SDWaZB30SDXaVB30dAuayoaru+i4W8tDYzjWkUcE9Gd/LhaFEMrHq24vH+OFWDx3VxRtE6nAfyy7C+tIkku7D+257BIBFZeLegfOrG0hbukncBZGzjrAvqkbWaRwzS6Bb9uYq97lLaARfLotLWFXVj2sKq/RcFiCqBp98Vut4N9nooWdq8fu2xjl33YpumI7faItkFiVcC6DBn2TbG6itVH7641wyfog6md0K8udvO+Efvoe1X6XifdDJ/0Dp/cZfg++l6V3j28off4K7EeWSuycd229QZcXSKZkgl3sKCt04t6z+fgFrWIA3gWzRIDXDzMz9xzS5dktinGANE3omYhpJ1i1Ox+SA1ed9fq0jM0qvbuospc99ZbV2oU3SrFHVW23GbOW/1G3keFhb77H7TQ+M/oO1yrT192C/Owta8vj425T3TzQF8O1w9kzF7riR9jt+g2XPxfhmP4vuCxOYY5RDQOm3MQ2FkeOGcgYmsy2o9SI9Cv4cveHdOLJ9DKXV4lFIcLnuKz0jJvvXAUBnGgz5v6NVgI+gzSmLYWmKG3Nyz82PotFS+QNVb9+Ir9xbubkkU8T/GOsbKd8Wh3H7N4idM8e56EJFY8wsIqZZBN9Om4SlqBMTXI6lhF5amf3XjkF+V56TtwGRZVuvtV2YtriRUP/vdIT1B60iv1KAnyzFx7EMegi8Fj6JMfcYr1krn2IFyOlbu+9Mjx5JFn+tIjhwWWm8q8fSzfOzhO9jzvgz87zvVbiR5p6OZZOLKH7qgb8TAzv9kQfLzitz3UrXVAGq+A2OoZUwBLtQtfnPYhGA/w9E3RtptW36AvXz/PM33pAygRAUGrVGRC6ITOrs1PCXYcx1gY6reT2Xj0ZN+N8lU/I0sQEpJsWut0gOnOBtjhwivQ41G9fyFD6ivsNmqKfiYrg05v8WU/FI9EPUZbpH/iaPfilAPcRxXBjfmtzuJNdHVeWtCY1+W9rUnzR7h24810NBmPJn8db31zUP5A9+ngi8HvBw8Gk8GTwTeDPw2OBqcDd/DPwb8G/x78Z/Ph5tHm280fCujHH5Wc3w1qn03nf4S1sVE=</latexit> ˆ r(x|✓) <latexit sha1_base64="NPA37tSEX6NJZFS7lgnMywc24Uw=">AAAcjnicpVltc9y2Eb6kb6n65jRfOhN/QKqxa2dO57vTq9Px1OPEk3TGrhVZcpyIkgYklyTmSIICwPOdGPav9Gv7kzrTH9MFyJP4eta0pxEPxD7PYrFYLBc8OwmZVOPxvz/48Cc//dnPf/HRLzd+9evf/PZ3dz7+/RvJU+HAicNDLt7aVELIYjhRTIXwNhFAIzuE7+zZl1r+3RyEZDw+VssEziLqx8xjDlXYdXHnEyugKhP5gwX5kVgqAEUfXtzZHI/G5kPajUnZ2Hz6h6v/DPBzePHxp47lcieNIFZOSKU8nYwTdZZRoZgTQr5hpRIS6syoD6fYjGkE8iwz1ufkHva4xOMC/2NFTG+VkdFIymVkIzKiKpBNme7skp2myjs4y1icpApipxjIS0OiONGuIC4T4KhwiQ3qCIa2EieggjoKHVYbxdg0XBQGb2zcI8axEm2NJa4RTpu8YyogScgVMl3wcDkMOnOpmG0JcPNM+HaejUcHQ+1LfZkcjLcfTye7ewd70/2d3UnewbTDFK6p42vqLZi+AIjr1Cpn/Bh1GH35xr02mwsa+6uRJwV9b2d/vHtwMN3enT7emUwOSvZ7yOWMd0p01+oNXamXfqjbivNQ1iImkyyNmVrUO31Bk4A5jd4oDRUT/N3Q5nymqC2HeElDKhZDL+RU1UNRD/ok5iKioWRXcJbJ1PaY3xgdAzoAd2gLOoO6gsyDZRwlWzRVvK5ZcqHuOzzCvSgx0mOqbGYj5BA3x6tEbz15zA9LLcEyCSCWeZaKMK9qSVxPwWIYMFfv75kc6qvx85NKdAyJwxRUu4ulHxLUV+3WUWgcE+Gd5AnERqHizhMahmfaDhACvPocIU4j1B/h/jGbFEViq1hyl6BvQ1D1zYIeb7gjo46De0SuVFgBJp06h82u6pSFxBZohmlIwmLcblFEY7cYTlNChqsilphocM3lkLjoBmEymxzpSbLYx95COoowt5nN+zXEIGhokgDqUYjasGJ4V6rPLB2DOjby08kZ3sFCSSfbnOR5HYbtBNOFicQ8s7BtxTxB423MwDPLZr6csaTWF3MWu+iKhiaMTzbXa1GMGOAiZIFSyRePHhnRiAv/EUbzIzSiMEgpnPRbNv9Cm9XQphuwsh7d4GMKpCKzpOfRiIVLS2K2S5QOeaOrmagKlRVH6eyLu5LUh2FRrtWrQEQZa9rgMs+7EbtNMfh5lsHIGvqj/O8NGcPMkTGUQVsGlymb01DPDufDIrg0hn6P8RFzEtGlDXXCEhJE4u5KBWhjtHeaKZIQywnAMdui5UyMIZd7/TqKBI0qqFQtMi499FONs5GpcB6ydPlrE+x1LZeXlylFqGW+SfGVtzDXoBWqB3aDuwYWSBz+MFhK5sjVitfJOIFVTKnAoWH2Mr8wAdSxN/TEa9hX+UUHLPRFHfZijUrhNlVaIXjqwebEEswP1MMGwRY3EfjsqKkuSjCG6mujr7aXJfnF8XmxzbKISb00LTI0yc/fy8HHlbzMzfe55VLfB8yEeNOAYY2C4fb6olSm74rQOMGHYGNFYG62QQZvWmG7Es3asmgle9mW+SvZ122ZWsmO2zLPLkT43dzON6LzbKudrZJSnLSZN6IVE93wFRZcgtmpyfKkud/0szw/nVai5G+59Rn+lZFCrIi5bgg/ks0puQ4brRYEZhbF5phKUJd51qSKKi4aPk9cEMUIHpaKxOR9xTBLYsRW76Yt9zWJOkeWrKLZpnRyzqdVVoa08xbTaxEhVHTFK9rTwqHPeOh2b3jscc2RoB7rxAgKRlacGVqrqhFxmvfTUNhBgUSykMdreHMqVqAO/qLBLHf0ogt71Y296sIuu7HLLuy8GzvvwqpurOq0FwTvho+LhXwJKuBuYw0dikXldRHzpb6zytqqDhQ8FDfAI33XDZRYLC5vkK/NbT+UxbwO1h3dcIdK3LFVa819j70N8FEDbB6m4OizLuEYpKI7xk346qK3bK7yru5qJaRY6dMhxcN1vaogWWchlazTIG6jQazTIG+jQa7ToG6joV3WVDRc3UbDDy0NIce1ijgmolv5cbUohlY8WnF5/xorwOK7uaJonU4D+EWsz0iRJBfWn9tzWCQCK68W9E+dWNbCXbBO4KwNnHUBPdo2s8hhGt2CXzWxVz1KW8AieXTa2sIuiDWs6m9RsJgCaNp9vt3tYI+nooXd6ccu29hlH7ZpOmK7PaJtkFgVhF2GDPumWF3F6qN3m8zwCfpgaiXs4fl23jdiH32nSt/ppJvhk97hk9sM30ffqdK7hzf0Hn8l5BFZkY3r7pE34OgSyZRMuIMFa51e1Ds+B6eoRWzAs2iWGODi8/zUOSO6JLNMMQaIvhY1CyHtFKNm+31q8Lq9VpeeoVG1cxtV5rqz3rpSo+hWKW6psuU2c97qN/I+Kiz03X+vhcZ/Rt/jtfr0ZbswD1u7+rJnzN3XzQN9ebx+IGP2Wk/8L3aLbsPF/2U4hu8LHptjmE1F47A5B4Gd5YFzBiImk9FulBqBftle9m6ZXjyBVu7yKqE4XPAUn5XEvPXCUUKIfX3e1K/BAtBnkMa0tcAMfW+D4MfSb6l4gayx6sdX/SbfvLspWdR1Fe8YK9saj7Z3MYuXOM2z5klAY8UjLKzSELKJPh1XSSswpgZZHauoPPWzG4/8ojwvfQVOiEWV7n5V9uJaYsWD/z3SY5Qe90pdRv08M9cexBHoYvAI+uSHnGG9ZK49CIdj5a4vPXI8eeSZvvTIYYHlpjJvH8v3DradPc/74M+Ocv1WokcaOHkWjKyhM+pGfK5fGvoRxccrfltD3VoHZPEKiK2eMQWEqXbhi5M+RMh9PH0ztO261Tfoy9fP80xf+gBKREDRKhWZEDpmsyvzU4IVxzEWhvrtZDYe7e86Ub7qD+kShIQkm9Y6bQh1ZwNsc+EW6PGo3r+QAfMUdhs1RX8oK4NOb/BlPxSPRD1GW6R/4mj34pR93EcVwbX5rc7iTXR1XlrQmNfFnc1J80e4duPNdDQZjybfjjefHgyKz0eDTwd/HDwYTAb7g6eDbwaHg5OBM1gO/jH45+Bfd+/c3bv75O5fCuiHH5ScTwa1z91v/gt3VKeC</latexit> <latexit sha1_base64="OWtH3yFwQxlgBBM8LzzB+Kr7/wE=">AAAcjnicpVltb9zGEb6kb4n65jRfCsQfNhXk2sHpfHd6sZzCqOHESArYtSpLjltREpbkkFwcyaV2l+c7MSz6T/q1/dp/U6A/prNLnsTXs9CeIN5y53lmZ2dnh7M8OwmZVOPxvz/48Ac//NGPf/LRxxs//dnPf/HLO5/86o3kqXDgxOEhF29tKiFkMZwopkJ4mwigkR3Cd/bsKy3/bg5CMh4fq2UCZxH1Y+YxhyrsurjzqRVQlYn8/oJ8TywVgKIPLu5sjkdj8yHtxqRsbD799dV/Pv7bv54dXnzymWO53EkjiJUTUilPJ+NEnWVUKOaEkG9YqYSEOjPqwyk2YxqBPMuM9TnZwh6XeFzgf6yI6a0yMhpJuYxsREZUBbIp051dstNUeQdnGYuTVEHsFAN5aUgUJ9oVxGUCHBUusUEdwdBW4gRUUEehw2qjGJuGi8LgjY0tYhwr0dZY4hrhtMk7pgKShFwh0wUPl8OgM5eK2bYAN8+Eb+fZeHQw1L7Ul8nBeOfxdLK3f7A/fbS7N8k7mHaYwjV1fE29BdMXAHGdWuWMH6MOoy/f2GqzuaCxvxp5UtD3dx+N9w4Opjt708e7k8lByX4PuZzxbonuWr2hK/XSD3VbcR7KWsRkkqUxU4t6py9oEjCn0RuloWKCvxvanM8UteUQL2lIxWLohZyqeijqQZ/EXEQ0lOwKzjKZ2h7zG6NjQAfgDm1BZ1BXkHmwjKNkm6aK1zVLLtQ9h0e4FyVGekyVzWyEHOLmeJXorSeP+WGpJVgmAcQyz1IR5lUtiespWAwD5ur9PZNDfTV+flKJjiFxmIJqd7H0Q4L6qt06Co1jIryTPIHYKFTceULD8EzbAUKAV58jxGmE+iPcP2aTokhsF0vuEvRtCKq+WdDjDXdk1HFwj8iVCivApFPnsNlVnbKQ2ALNMA1JWIzbLYpo7BbDaUrIcFXEEhMNrrkcEhfdIExmkyM9SRb72FtIRxHmNrN5v4EYBA1NEkA9ClEbVgzvSvWZpWNQx0Z+OjnDO1go6WSbkzyvw7CdYLowkZhnFratmCdovI0ZeGbZzJczltT6Ys5iF13R0ITxyeZ6LYoRA1yELFAq+fLhQyMaceE/xGh+iEYUBimFk37L5l9qsxradANW1qMbfEyBVGSW9DwasXBpScx2idIhb3Q1E1WhsuIonX1xV5L6MCzKtXoViChjTRtc5nk3YrcpBj/PMhhZQ3+U/7UhY5g5MoYyaMvgMmVzGurZ4XxYBJfG0D9jfMScRHRpQ52whASRuLtSAdoY7Z1miiTEcgJwzLZoORNjyOVev44iQaMKKlWLjEsP/VTjbGQqnIcsXf7aBHtdy+XlZUoRaplvUnzlLcw1aIXqgd3groEFEoc/DJaSOXK14nUyTmAVUypwaJi9zC9MAHXsDT3xGvZVftEBC31Rh71Yo1K4TZVWCJ66vzmxBPMD9aBBsMVNBD47aqqLEoyh+troq+1lSX5xfF5ssyxiUi9NiwxN8vP3cvBxJS9z831uudT3ATMh3jRgWKNguL2+KJXpuyI0TvAh2FgRmJttkMGbVtiuRLO2LFrJXrZl/kr2TVumVrLjtsyzCxF+N7fzjeg8225nq6QUJ23mjWjFRDd8jQWXYHZqsjxp7jf9LM9Pp5Uo+WNufY5/ZaQQK2KuG8L3ZHNKrsNGqwWBmUWxOaYS1GWeNamiiouGzxMXRDGCh6UiMXlfMcySGLHVu2nLfU2izpElq2i2KZ2c82mVlSHtvMX0WkQIFV3xiva0cOgzHrrdGx57XHMkqMc6MYKCkRVnhtaqakSc5v00FHZQIJEs5PEa3pyKFaiDv2gwyx296MJedWOvurDLbuyyCzvvxs67sKobqzrtBcG74eNiIV+CCrjbWEOHYlF5XcR8pe+ssraqAwUPxQ3wSN91AyUWi8sb5Gtz2w9lMa+DdUc33KESd2zVWnPfY28DfNQAm4cpOPqsSzgGqeiOcRO+uugtm6u8q7taCSlW+nRI8XBdrypI1llIJes0iNtoEOs0yNtokOs0qNtoaJc1FQ1Xt9Hwl5aGkONaRRwT0a38uFoUQyserbi8f4gVYPHdXFG0TqcB/CLW56RIkgvrd+05LBKBlVcL+ttOLGvhLlgncNYGzrqAHm2bWeQwjW7Br5rYqx6lLWCRPDptbWEXxBpW9bcoWEwBNO0+3+l2sMdT0cLu9mOXbeyyD9s0HbHdHtE2SKwKwi5Dhn1TrK5i9dG7Q2b4BL0/tRL24Hwn7xuxj75bpe920s3wSe/wyW2G76PvVundwxt6j78S8pCsyMZ1W+QNOLpEMiUT7mDBWqcX9Y7PwSlqERvwLJolBrj4Ij91zoguySxTjAGir0XNQkg7xajZeZ8avO6s1aVnaFTt3kaVue6ut67UKLpViluqbLnNnLf6jbyHCgt9995rofGf0fd4rT592SnMw9aevuwbcx/p5oG+PF4/kDF7rSf+F7tFt+Hi/zIcw/cFj80xzKaicdicg8DO8sA5AxGTyWgvSo1Av2wve7dNL55AK3d5lVAcLniKz0pi3nrhKCHEvj5v6tdgAegzSGPaWmCG3tog+LH0WypeIGus+vFVv8k3725KFnVdxTvGyrbHo509zOIlTvOseRLQWPEIC6s0hGyiT8dV0gqMqUFWxyoqT/3sxiO/KM9LX4MTYlGlu1+VvbiWWPHgf4/0GKXHvVKXUT/PzLUHcQS6GDyCPvkhZ1gvmWsPwuFYuetLjxxPHnmmLz1yWGC5qczbx/K9g21nz/M++LOjXL+V6JEGTp4FI2vojLoRX+iXhn5E8fGK39ZQt9YBWbwCYqtnTAFhql344qQPEXIfT98Mbbtu9Q368vXzPNOXPoASEVC0SkUmhI7Z7Mr8lGDFcYyFoX47mY1Hj/acKF/1h3QJQkKSTWudNoS6swG2uXAL9HhU71/IgHkKu42aoj+UlUGnN/iyH4pHoh6jLdI/cbR7cco+7qOK4Nr8VmfxJro6Ly1ozOvizuak+SNcu/FmOpqMR5M/jTefHgyKz0eDzwa/GdwfTAaPBk8H3w4OBycDZ7Ac/H3wj8E/7965u3/3yd3fF9APPyg5nw5qn7vf/hcCYqj/</latexit> <latexit sha1_base64="OWtH3yFwQxlgBBM8LzzB+Kr7/wE=">AAAcjnicpVltb9zGEb6kb4n65jRfCsQfNhXk2sHpfHd6sZzCqOHESArYtSpLjltREpbkkFwcyaV2l+c7MSz6T/q1/dp/U6A/prNLnsTXs9CeIN5y53lmZ2dnh7M8OwmZVOPxvz/48Ac//NGPf/LRxxs//dnPf/HLO5/86o3kqXDgxOEhF29tKiFkMZwopkJ4mwigkR3Cd/bsKy3/bg5CMh4fq2UCZxH1Y+YxhyrsurjzqRVQlYn8/oJ8TywVgKIPLu5sjkdj8yHtxqRsbD799dV/Pv7bv54dXnzymWO53EkjiJUTUilPJ+NEnWVUKOaEkG9YqYSEOjPqwyk2YxqBPMuM9TnZwh6XeFzgf6yI6a0yMhpJuYxsREZUBbIp051dstNUeQdnGYuTVEHsFAN5aUgUJ9oVxGUCHBUusUEdwdBW4gRUUEehw2qjGJuGi8LgjY0tYhwr0dZY4hrhtMk7pgKShFwh0wUPl8OgM5eK2bYAN8+Eb+fZeHQw1L7Ul8nBeOfxdLK3f7A/fbS7N8k7mHaYwjV1fE29BdMXAHGdWuWMH6MOoy/f2GqzuaCxvxp5UtD3dx+N9w4Opjt708e7k8lByX4PuZzxbonuWr2hK/XSD3VbcR7KWsRkkqUxU4t6py9oEjCn0RuloWKCvxvanM8UteUQL2lIxWLohZyqeijqQZ/EXEQ0lOwKzjKZ2h7zG6NjQAfgDm1BZ1BXkHmwjKNkm6aK1zVLLtQ9h0e4FyVGekyVzWyEHOLmeJXorSeP+WGpJVgmAcQyz1IR5lUtiespWAwD5ur9PZNDfTV+flKJjiFxmIJqd7H0Q4L6qt06Co1jIryTPIHYKFTceULD8EzbAUKAV58jxGmE+iPcP2aTokhsF0vuEvRtCKq+WdDjDXdk1HFwj8iVCivApFPnsNlVnbKQ2ALNMA1JWIzbLYpo7BbDaUrIcFXEEhMNrrkcEhfdIExmkyM9SRb72FtIRxHmNrN5v4EYBA1NEkA9ClEbVgzvSvWZpWNQx0Z+OjnDO1go6WSbkzyvw7CdYLowkZhnFratmCdovI0ZeGbZzJczltT6Ys5iF13R0ITxyeZ6LYoRA1yELFAq+fLhQyMaceE/xGh+iEYUBimFk37L5l9qsxradANW1qMbfEyBVGSW9DwasXBpScx2idIhb3Q1E1WhsuIonX1xV5L6MCzKtXoViChjTRtc5nk3YrcpBj/PMhhZQ3+U/7UhY5g5MoYyaMvgMmVzGurZ4XxYBJfG0D9jfMScRHRpQ52whASRuLtSAdoY7Z1miiTEcgJwzLZoORNjyOVev44iQaMKKlWLjEsP/VTjbGQqnIcsXf7aBHtdy+XlZUoRaplvUnzlLcw1aIXqgd3groEFEoc/DJaSOXK14nUyTmAVUypwaJi9zC9MAHXsDT3xGvZVftEBC31Rh71Yo1K4TZVWCJ66vzmxBPMD9aBBsMVNBD47aqqLEoyh+troq+1lSX5xfF5ssyxiUi9NiwxN8vP3cvBxJS9z831uudT3ATMh3jRgWKNguL2+KJXpuyI0TvAh2FgRmJttkMGbVtiuRLO2LFrJXrZl/kr2TVumVrLjtsyzCxF+N7fzjeg8225nq6QUJ23mjWjFRDd8jQWXYHZqsjxp7jf9LM9Pp5Uo+WNufY5/ZaQQK2KuG8L3ZHNKrsNGqwWBmUWxOaYS1GWeNamiiouGzxMXRDGCh6UiMXlfMcySGLHVu2nLfU2izpElq2i2KZ2c82mVlSHtvMX0WkQIFV3xiva0cOgzHrrdGx57XHMkqMc6MYKCkRVnhtaqakSc5v00FHZQIJEs5PEa3pyKFaiDv2gwyx296MJedWOvurDLbuyyCzvvxs67sKobqzrtBcG74eNiIV+CCrjbWEOHYlF5XcR8pe+ssraqAwUPxQ3wSN91AyUWi8sb5Gtz2w9lMa+DdUc33KESd2zVWnPfY28DfNQAm4cpOPqsSzgGqeiOcRO+uugtm6u8q7taCSlW+nRI8XBdrypI1llIJes0iNtoEOs0yNtokOs0qNtoaJc1FQ1Xt9Hwl5aGkONaRRwT0a38uFoUQyserbi8f4gVYPHdXFG0TqcB/CLW56RIkgvrd+05LBKBlVcL+ttOLGvhLlgncNYGzrqAHm2bWeQwjW7Br5rYqx6lLWCRPDptbWEXxBpW9bcoWEwBNO0+3+l2sMdT0cLu9mOXbeyyD9s0HbHdHtE2SKwKwi5Dhn1TrK5i9dG7Q2b4BL0/tRL24Hwn7xuxj75bpe920s3wSe/wyW2G76PvVundwxt6j78S8pCsyMZ1W+QNOLpEMiUT7mDBWqcX9Y7PwSlqERvwLJolBrj4Ij91zoguySxTjAGir0XNQkg7xajZeZ8avO6s1aVnaFTt3kaVue6ut67UKLpViluqbLnNnLf6jbyHCgt9995rofGf0fd4rT592SnMw9aevuwbcx/p5oG+PF4/kDF7rSf+F7tFt+Hi/zIcw/cFj80xzKaicdicg8DO8sA5AxGTyWgvSo1Av2wve7dNL55AK3d5lVAcLniKz0pi3nrhKCHEvj5v6tdgAegzSGPaWmCG3tog+LH0WypeIGus+vFVv8k3725KFnVdxTvGyrbHo509zOIlTvOseRLQWPEIC6s0hGyiT8dV0gqMqUFWxyoqT/3sxiO/KM9LX4MTYlGlu1+VvbiWWPHgf4/0GKXHvVKXUT/PzLUHcQS6GDyCPvkhZ1gvmWsPwuFYuetLjxxPHnmmLz1yWGC5qczbx/K9g21nz/M++LOjXL+V6JEGTp4FI2vojLoRX+iXhn5E8fGK39ZQt9YBWbwCYqtnTAFhql344qQPEXIfT98Mbbtu9Q368vXzPNOXPoASEVC0SkUmhI7Z7Mr8lGDFcYyFoX47mY1Hj/acKF/1h3QJQkKSTWudNoS6swG2uXAL9HhU71/IgHkKu42aoj+UlUGnN/iyH4pHoh6jLdI/cbR7cco+7qOK4Nr8VmfxJro6Ly1ozOvizuak+SNcu/FmOpqMR5M/jTefHgyKz0eDzwa/GdwfTAaPBk8H3w4OBycDZ7Ac/H3wj8E/7965u3/3yd3fF9APPyg5nw5qn7vf/hcCYqj/</latexit> <latexit sha1_base64="8WBmztmqRcTSWIh+NwhKhjUiPqA=">AAAcjnicpVltc9y2Eb4kfUnVNyX5GH1AqrFrZ07nu5NkS+l4mnHiSTpj14osOW5FSQOSSxJzJEEB4PlODPtX+rX9Sf03XYA8ia9nTXsa8UDs8ywWi8VywbOTkEk1Hv/ngw8/+tnPf/HLj3+18evf/PZ3v9/85NM3kqfCgVOHh1y8tamEkMVwqpgK4W0igEZ2CD/as2+0/Mc5CMl4fKKWCZxH1I+ZxxyqsOty8zMroCoT+YMF+YlYKgBFH15ubo9HY/Mh7cakbGwPys/R5SefO5bLnTSCWDkhlfJsMk7UeUaFYk4I+YaVSkioM6M+nGEzphHI88xYn5N72OMSjwv8jxUxvVVGRiMpl5GNyIiqQDZlurNLdpYq7+A8Y3GSKoidYiAvDYniRLuCuEyAo8IlNqgjGNpKnIAK6ih0WG0UY9NwURi8sXGPGMdKtDWWuEY4bfKOqYAkIVfIdMHD5TDozKVitiPAzTPh23k2Hh0MtS/1ZXIw3j2cTvYfHzyePtnbn+QdTDtM4YY6vqHegekLgLhOrXLGh6jD6Ms37rXZXNDYX408KeiP956M9w8Oprv708O9yeSgZL+HXM54r0R3rd7QlXrph7qtOA9lLWIyydKYqUW90xc0CZjT6I3SUDHB3w1tzmeK2nKIlzSkYjH0Qk5VPRT1oE9jLiIaSnYN55lMbY/5jdExoANwh7agM6gryDxYxlGyQ1PF65olF+q+wyPcixIjPabKZjZCjnBzvEr01pMn/KjUEiyTAGKZZ6kI86qWxPUULIYBc/X+nsmhvho/P61Ex5A4TEG1u1j6IUF91W4dhcYxEd5JnkBsFCruPKVheK7tACHAq88R4jRC/RHuH7NJUSR2iiV3Cfo2BFXfLOjxhjsy6ji4R+RKhRVg0qlz2Oy6TllIbIFmmIYkLMbtFkU0dovhNCVkuCpiiYkG11wOiYtuECazyZGeJIt97C2kowhzm9m830EMgoYmCaAehagNK4Z3pfrM0jGoYyM/m5zjHSyUdLLtSZ7XYdhOMF2YSMwzC9tWzBM03sYMPLNs5ssZS2p9MWexi65oaML4ZHO9FsWIAS5CFiiVfPXokRGNuPAfYTQ/QiMKg5TCSb9l86+0WQ1tugEr69ENPqZAKjJLeh6NWLi0JGa7ROmQN7qaiapQWXGUzr64K0l9GBblWr0KRJSxpg0u87xbsdsUg59nGYysoT/K/9GQMcwcGUMZtGVwlbI5DfXscD4sgitj6N8wPmJOIrq0oU5YQoJI3F2pAG2M9k4zRRJiOQE4Zlu0nIkx5HKvX0eRoFEFlapFxqWHfqpxNjIVzkOWLn9tgr2u5erqKqUItcw3Kb7yFuYGtEL1wG5xN8ACicMfBUvJHLla8ToZJ7CKKRU4NMxe5pcmgDr2hp54Dfsqv+yAhb6ow16sUSncpkorBE892J5YgvmBetgg2OI2Ap8dN9VFCcZQfW301fayJL88uSi2WRYxqZemRYYm+fl7Ofi4kle5+b6wXOr7gJkQbxowrFEw3F5flsr0XREap/gQbKwIzM02yOBNK2xXollbFq1kL9syfyX7ri1TK9lJW+bZhQi/m9v5VnSR7bSzVVKKkzbzVrRiohu+xYJLMDs1WZ4095t+ludn00qU/DW3vsC/MlKIFTHXDeEnsj0lN2Gj1YLAzKLYHFMJ6jLPmlRRxUXD54kLohjBw1KRmLyvGGZJjNjq3bTlviZR58iSVTTblE7OxbTKypB20WJ6LSKEiq54RXtaOPQZD93uDY89rjkS1GOdGEHByIozQ2tVNSJO834aCjsokEgW8ngNb07FCtTBXzSY5Y5edGGvu7HXXdhlN3bZhZ13Y+ddWNWNVZ32guDd8HGxkC9BBdxtrKFDsai8KWK+0XdWWVvVgYKH4hZ4rO+6gRKLxeUt8rW57YeymNfBuqMb7lCJO7ZqrbnvsbcBPm6AzcMUHH3WJRyDVHTHuAlfXfSWzVXe1V2thBQrfTqkeLiuVxUk6yykknUaxF00iHUa5F00yHUa1F00tMuaiobru2j4e0tDyHGtIo6J6E5+XC2KoRWPVlzev8QKsPhurihap9MAfhHrC1IkyYX1p/YcFonAyqsF/WMnlrVwl6wTOGsDZ11Aj7bNLHKYRrfg103sdY/SFrBIHp22trALYg2r+lsULKYAmnZf7HY72OOpaGH3+rHLNnbZh22ajthuj2gbJFYFYZchw74pVlex+ujdJTN8gj6YWgl7eLGb943YR9+r0vc66Wb4pHf45C7D99H3qvTu4Q29x18JeURWZOO6e+QNOLpEMiUT7mDBWqcX9Y7PwSlqERvwLJolBrj4Mj9zzokuySxTjAGib0TNQkg7xajZfZ8avO6u1aVnaFTt3UWVue6tt67UKLpVijuqbLnNnLf6jbyPCgt9999rofGf0Xe4Vp++7BbmYWtfXx4bc5/o5oG+HK4fyJi91hP/i92i23DxfxmO4fuCx+YYZlPROGzOQWBneeCcgYjJZLQfpUagX7aXvTumF0+glbu8SigOFzzFZyUxb71wlBBiX5839WuwAPQZpDFtLTBD39sg+LH0WypeIGus+vFVv8k3725KFnVdxTvGynbGo919zOIlTvOseRLQWPEIC6s0hGyiT8dV0gqMqUFWxyoqT/3sxiO/KM9L34ITYlGlu1+VvbiWWPHgf4/0BKUnvVKXUT/PzLUHcQy6GDyGPvkRZ1gvmWsPwuFYuetLjxxPHnmmLz1yWGC5qczbx/K9g21nz/M++LPjXL+V6JEGTp4FI2vojLoRX+qXhn5E8fGK39ZQt9YBWbwCYqtnTAFhql344rQPEXIfT98Mbbtp9Q368vXzPNOXPoASEVC0SkUmhE7Y7Nr8lGDFcYyFoX47mY1HT/adKF/1h3QJQkKSTWudNoS6swG2uXAL9HhU71/IgHkKu42aoj+UlUGnt/iyH4pHoh6jLdI/cbR7cco+7qOK4Mb8VmfxJro6Ly1ozOtyc3vS/BGu3XgzHU3Go8kP4+2vD8of6D4efD74w+DBYDJ4Mvh68P3gaHA6cAbLwT8H/xr8e2tz6/HW060/F9APPyg5nw1qn63v/wuOb6XU</latexit> ✓i <latexit sha1_base64="l7N+1zwpgVSD9LHyu2N3Zdptxos=">AAAcgXicpVltc9y2Eb4kfUnVpnXaj/EHphq7duZ0ujudbDkZz3iceNLO2LUqS45bUdKA5JLEHEhQAHi+E8v+iH5tf03/Rf9NFyBP4utZk55GPBD7PIvFYrFc8JyEUanG4/9+9PEnP/npz37+6S+2fvmrz379mzuf//at5Klw4cTljIt3DpHAaAwniioG7xIBJHIY/ODMv9XyHxYgJOXxsVolcBaRIKY+dYnCrne2CkGRC3pxZ3s8GpuP1W5Mysb2s8/+k1qDweDw4vMvXNvjbhpBrFxGpDydjBN1lhGhqMsg37JTCQlx5ySAU2zGJAJ5lhmDc+se9niWzwX+x8oyvVVGRiIpV5GDyIioUDZlurNLdpoq/+Aso3GSKojdYiA/ZZbilp695VEBrmIrbBBXULTVckMiiKvQR7VRjE3DZWHw1tY9y/hSoq2xxGXBaVvvqQqthHGFTA98XAGDzjwi5jsCvDwTgZNn49HBUPtSXyYH470n08n+o4NH08ez/UnewXRYCtfU8TX1FsxAAMR1apUzfoI6jL58616bzQWJg/XIk4L+aPZ4vH9wMN3bnz6ZTSYHJfsD5HLGsxLdtXpDT+qlH+q24pzJWsRkkqYxVct6ZyBIElK30RulTFHB3w8dzueKOHKIl5QRsRz6jBNVD0U96NOYi4gwSa/gLJOp49OgMToGdAje0BFkDnUFmQ+rOEp2SKp4XbPkQt13eYTbT2Kkx0Q51EHIIW6O14nebfKYH5ZawlUSQizzLBUsr2pJPF/BchhST2/puRzqq/Hz00p0DC2XKqh2F0s/tFBftVtHoXFMhHeSJxAbhYq7TwljZ9oOEAL8+hwhTiPUH+H+MZsURWKnWHLPQt8yUPXNgh5vuCMjrot7RK5V2GFIVJ1D51d1ylJiCzTDNKRFY9xuUURirxhOUxjFVRErTDS45nJoeegGYZKZHOlJ0jjA3kI6ijC5mc37PcQgCDNJAPUoRG3ZMbwv1We2jkEdG/np5AzvYKmkm21P8rwOw3aC6cJEYp7Z2LZjnqDxDibdue3QQM5pUuuLOY09dEVDE8YnXei1KEYMcRGyUKnk691dIxpxEexiNO+iEYVBSuGk39HF19qshjbdgLX16IYAUyARmS19n0SUrWyJ2S5ROuSNrmaiKlRWHKWzL+5Kqz4MjXKtXoUiymjTBo/6/o3Ya4ohyLMMRvYwGOX/aMgoZo6MogzaMrhM6YIwPTucD43g0hj6V4yPmFsRWTlQJ6wgQSTurlSANkZ7p5kiLct2Q3DNtmg5E2PI436/jiJBowoiVYuMSw/9VONsZCqchyxd/sYEe13L5eVlShBqm2+r+MpbmGvQGtUDu8FdAwskDn8YriR15XrF62ScwDqmVOgSlr3KL0wAdewNPfEa9nV+0QFjgajDXm5QKbymSpuBrx5sT2xBg1A9bBAccROBz4+a6qIEY6i+Nvrq+FmSXxyfF9ssi6jUS9MiQ5P84oMcfFzJy9x8n9seCQLATIg3DRjWKBhuby5KZfquCI0TfAg2VgQWZhtk8LYVtmvRvC2L1rJXbVmwln3flqm17Lgt851ChN/N7XwjOs922tkqKcVJm3kjWjPRDd9hwSWok5osbzX3m36W56fTSpT8Obe/xL8yUiw7op7H4O/W9tS6DhutFgRmFkUXmEpQl3nWpIooLho+TzwQxQg+loqWyfuKYpbEiK3eTVvuaxJ1jixZRbNN6eScT6usDGnnLabfIgJTZM0r2tPCoc8587o3PPZ45kxQj3XLCApGVhwaWquqEXGa99NQ2EGBRFLG4w28BRFrUAd/2WCWO3rZhb3qxl51YVfd2FUXdtGNXXRhVTdWddoLgnfDx8VCvgIVcq+xhi7BovK6iPlW39llbVUHCs7EDfBI33UDJRaLqxvkG3PbD6Uxr4N1RzfcJRJ3bNVac99jbwN81ACbhym4+nhrcQxS0R3jJnx10Vs213lXd7USUqz06ZDgebpeVVhZZyGVbNIgbqNBbNIgb6NBbtKgbqOhXdZUNFzdRsPfWhoYx7WKOCaiW/lxvSiGVjxacXn/FCvA4ru5omidTgP4ZdlfWkWSXNrftOewTARWXi3oHzqxtIW7oJ3AeRs47wL6pG1mkcM0ugW/amKvepS2gEXy6LS1hV1a9rCqv0XBYgqgaff5XreDfZ6KFnbWj121sas+bNN0xHZ7RNsgsSpgXYYM+6ZYXcXqo3fPmuMT9MHUTujD8728b8Q++qxKn3XSzfBJ7/DJbYbvo8+q9O7hDb3HX4m1a63JxnX3rLfg6hLJlEy4gwVtnV7Ue74At6hFHMCzaJYY4PKr/NQ9s3RJZptiDBB9LWoWQtopRs3eh9TgdW+jLj1Do2p2G1XmOttsXalRdKsUt1TZcps5b/UbeR8VFvruf9BC4z+j78lGffqyV5iHrX19eWTMfaybB/ryZPNAxuyNnvgxdotuw8X/ZTiG70sem2OYQ0TjsLkAgZ3lgXMOIrYmo/0oNQL9fr3s3TG9eAKt3OVVQnG44Ck+Ky3z1gtHYRAH+rypX4OFoM8gjWlrgRn63paFH1u/peIFssaqH1+xv3h3U7KI5yneMVa2Mx7t7WMWL3GaZy+SkMSKR1hYpQyyiT4dV0lrMKYGWR2rqDz1sxuP/KI8L30HLsOiSne/LntxLbHiwf8e6TFKj3ulHiVBnplrD+IIdDF4BH3yQ06xXjLXHoTLsXLXlx45njzyTF965LDEclOZt4/lewfHyV7kffDnR7l+K9EjDd08C0f20B11I77SLw2DiODjFb/toW5tAtJ4DcRWz5gCWKpd+PKkD8F4gKdvirZdt/oGffXmRZ7pSx9AiQgIWqUiE0LHdH5lfkqw4zjGwlC/nczGo8f7bpSv+xlZgZCQZNNapwNMdzbADhdegR6P6v1LGVJfYbdRU/QzWRl0eoMv+6F4JOox2iL9E0e7F6cc4D6qCK7Nb3UWb6Kr89KCxrwu7mxPmj/CtRtvp6PJeDT5y3j72cGg+Hw6+GLw+8GDwWTwePBs8MfB4eBk4A7Y4J+Dfw3+ffeTuw/vju9OC+jHH5Wc3w1qn7vf/A9mDaMZ</latexit> <latexit sha1_base64="A0803SRxkfT9iDkUxwV/3t5Rbms=">AAAcgXicpVltc9y2Eb4kfUnVpnXaj9EHphq5duZ0vjtJlpyMZzxO3LQzdq3IsuNElDQguSQxBxIUAJ7vxLI/ol/bz/0h/Rf9N12APImvZ017GvFA7PMsFovFcsFzEkalGo//88GHH/3kpz/7+ce/2Pjlrz759W/ufPrbN5KnwoXXLmdcvHWIBEZjeK2oYvA2EUAih8H3zuxrLf9+DkJSHp+oZQJnEQli6lOXKOx6a6sQFLmgF3e2xqOx+VjtxqRsbD355N/p9h83/nV08elnru1xN40gVi4jUp5Oxok6y4hQ1GWQb9iphIS4MxLAKTZjEoE8y4zBubWNPZ7lc4H/sbJMb5WRkUjKZeQgMiIqlE2Z7uySnabKPzzLaJykCmK3GMhPmaW4pWdveVSAq9gSG8QVFG213JAI4ir0UW0UY9NwURi8sbFtGV9KtDWWuCw4besdVaGVMK6Q6YGPK2DQmUfEbEeAl2cicPJsPDocal/qy+RwvPtoOtl/ePhwerC3P8k7mA5L4Zo6vqbeghkIgLhOrXLGj1CH0ZdvbLfZXJA4WI08KegP9w7G+4eH09396aO9yeSwZL+HXM54r0R3rd7Qk3rph7qtOGeyFjGZpGlM1aLeGQiShNRt9EYpU1Twd0OH85kijhziJWVELIY+40TVQ1EP+jjmIiJM0is4y2Tq+DRojI4BHYI3dASZQV1B5sMyjpIdkipe1yy5UHddHuH2kxjpMVEOdRByhJvjZaJ3mzzhR6WWcJmEEMs8SwXLq1oSz1ewGIbU01t6Jof6avz8uBIdQ8ulCqrdxdIPLdRX7dZRaBwT4Z3kCcRGoeLuY8LYmbYDhAC/PkeI0wj1R7h/zCZFkdgpltyz0LcMVH2zoMcb7siI6+IekSsVdhgSVefQ2VWdspDYAs0wDWnRGLdbFJHYK4bTFEZxVcQSEw2uuRxaHrpBmGQmR3qSNA6wt5COIkxuZvN+CzEIwkwSQD0KURt2DO9K9ZmtY1DHRn46OcM7WCjpZluTPK/DsJ1gujCRmGc2tu2YJ2i8g0l3Zjs0kDOa1PpiTmMPXdHQhPFJ53otihFDXIQsVCr58sEDIxpxETzAaH6ARhQGKYWTfkvnX2qzGtp0A1bWoxsCTIFEZLb0fRJRtrQlZrtE6ZA3upqJqlBZcZTOvrgrrfowNMq1ehWKKKNNGzzq+zdirymGIM8yGNnDYJT/rSGjmDkyijJoy+AypXPC9OxwPjSCS2PoDxgfMbcisnSgTlhCgkjcXakAbYz2TjNFWpbthuCabdFyJsaQx/1+HUWCRhVEqhYZlx76qcbZyFQ4D1m6/JUJ9rqWy8vLlCDUNt9W8ZW3MNegFaoHdoO7BhZIHP4oXErqytWK18k4gVVMqdAlLHuRX5gA6tgbeuI17Mv8ogPGAlGHPV+jUnhNlTYDX93bmtiCBqG63yA44iYCnx431UUJxlB9bfTV8bMkvzg5L7ZZFlGpl6ZFhib52Xs5+LiSl7n5Prc9EgSAmRBvGjCsUTDcXl2UyvRdERqv8SHYWBGYm22QwZtW2K5Es7YsWsletGXBSvZtW6ZWspO2zHcKEX43t/ON6DzbaWerpBQnbeaNaMVEN3yDBZegTmqyvNXcb/pZnp9OK1Hyl9z+HP/KSLHsiHoeg79aW1PrOmy0WhCYWRSdYypBXeZZkyqiuGj4PPFAFCP4WCpaJu8rilkSI7Z6N225r0nUObJkFc02pZNzPq2yMqSdt5h+iwhMkRWvaE8Lhz7lzOve8NjjmTNBPdYtIygYWXFoaK2qRsRp3k9DYQcFEkkZj9fw5kSsQB38RYNZ7uhFF/aqG3vVhV12Y5dd2Hk3dt6FVd1Y1WkvCN4NHxcL+QJUyL3GGroEi8rrIuZrfWeXtVUdKDgTN8BjfdcNlFgsLm+Qr8xtP5TGvA7WHd1wl0jcsVVrzX2PvQ3wcQNsHqbg6uOtxTFIRXeMm/DVRW/ZXOVd3dVKSLHSp0OC5+l6VWFlnYVUsk6DuI0GsU6DvI0GuU6Duo2GdllT0XB1Gw0/tjQwjmsVcUxEt/LjalEMrXi04vL+OVaAxXdzRdE6nQbwy7I/t4okubC/as9hkQisvFrQP3RiaQt3QTuBszZw1gX0SdvMIodpdAt+1cRe9ShtAYvk0WlrC7uw7GFVf4uCxRRA0+7z3W4H+zwVLexeP3bZxi77sE3TEdvtEW2DxKqAdRky7JtidRWrj95da4ZP0HtTO6H3z3fzvhH76HtV+l4n3Qyf9A6f3Gb4Pvpeld49vKH3+CuxHlgrsnHdtvUGXF0imZIJd7CgrdOLesfn4Ba1iAN4Fs0SA1x8kZ+6Z5YuyWxTjAGir0XNQkg7xajZfZ8avO6u1aVnaFTt3UaVue6tt67UKLpViluqbLnNnLf6jbyLCgt9d99rofGf0fdorT592S3Mw9a+vjw05h7o5qG+PFo/kDF7rSf+F7tFt+Hi/zIcw/c5j80xzCGicdicg8DO8sA5AxFbk9F+lBqBfr9e9u6YXjyBVu7yKqE4XPAUn5WWeeuFozCIA33e1K/BQtBnkMa0tcAMvb1h4cfWb6l4gayx6sdX7C/e3ZQs4nmKd4yV7YxHu/uYxUuc5tnzJCSx4hEWVimDbKJPx1XSCoypQVbHKipP/ezGI78oz0vfgMuwqNLdL8teXEusePC/R3qC0pNeqUdJkGfm2oM4Bl0MHkOf/IhTrJfMtQfhcqzc9aVHjiePPNOXHjkssNxU5u1j+d7BcbJneR/86XGu30r0SEM3z8KRPXRH3Ygv9EvDICL4eMVve6hb64A0XgGx1TOmAJZqFz5/3YdgPMDTN0Xbrlt9g7549SzP9KUPoEQEBK1SkQmhEzq7Mj8l2HEcY2Go305m49HBvhvlq35GliAkJNm01ukA050NsMOFV6DHo3r/QobUV9ht1BT9TFYGnd7gy34oHol6jLZI/8TR7sUpB7iPKoJr81udxZvo6ry0oDGviztbk+aPcO3Gm+loMh5NvhtvPTkcFJ+PB58Nfj+4N5gMDgZPBn8aHA1eD9wBG/x98I/BPzc/2ry/Od6cFtAPPyg5vxvUPptf/RfDxKQU</latexit> <latexit sha1_base64="A0803SRxkfT9iDkUxwV/3t5Rbms=">AAAcgXicpVltc9y2Eb4kfUnVpnXaj9EHphq5duZ0vjtJlpyMZzxO3LQzdq3IsuNElDQguSQxBxIUAJ7vxLI/ol/bz/0h/Rf9N12APImvZ017GvFA7PMsFovFcsFzEkalGo//88GHH/3kpz/7+ce/2Pjlrz759W/ufPrbN5KnwoXXLmdcvHWIBEZjeK2oYvA2EUAih8H3zuxrLf9+DkJSHp+oZQJnEQli6lOXKOx6a6sQFLmgF3e2xqOx+VjtxqRsbD355N/p9h83/nV08elnru1xN40gVi4jUp5Oxok6y4hQ1GWQb9iphIS4MxLAKTZjEoE8y4zBubWNPZ7lc4H/sbJMb5WRkUjKZeQgMiIqlE2Z7uySnabKPzzLaJykCmK3GMhPmaW4pWdveVSAq9gSG8QVFG213JAI4ir0UW0UY9NwURi8sbFtGV9KtDWWuCw4besdVaGVMK6Q6YGPK2DQmUfEbEeAl2cicPJsPDocal/qy+RwvPtoOtl/ePhwerC3P8k7mA5L4Zo6vqbeghkIgLhOrXLGj1CH0ZdvbLfZXJA4WI08KegP9w7G+4eH09396aO9yeSwZL+HXM54r0R3rd7Qk3rph7qtOGeyFjGZpGlM1aLeGQiShNRt9EYpU1Twd0OH85kijhziJWVELIY+40TVQ1EP+jjmIiJM0is4y2Tq+DRojI4BHYI3dASZQV1B5sMyjpIdkipe1yy5UHddHuH2kxjpMVEOdRByhJvjZaJ3mzzhR6WWcJmEEMs8SwXLq1oSz1ewGIbU01t6Jof6avz8uBIdQ8ulCqrdxdIPLdRX7dZRaBwT4Z3kCcRGoeLuY8LYmbYDhAC/PkeI0wj1R7h/zCZFkdgpltyz0LcMVH2zoMcb7siI6+IekSsVdhgSVefQ2VWdspDYAs0wDWnRGLdbFJHYK4bTFEZxVcQSEw2uuRxaHrpBmGQmR3qSNA6wt5COIkxuZvN+CzEIwkwSQD0KURt2DO9K9ZmtY1DHRn46OcM7WCjpZluTPK/DsJ1gujCRmGc2tu2YJ2i8g0l3Zjs0kDOa1PpiTmMPXdHQhPFJ53otihFDXIQsVCr58sEDIxpxETzAaH6ARhQGKYWTfkvnX2qzGtp0A1bWoxsCTIFEZLb0fRJRtrQlZrtE6ZA3upqJqlBZcZTOvrgrrfowNMq1ehWKKKNNGzzq+zdirymGIM8yGNnDYJT/rSGjmDkyijJoy+AypXPC9OxwPjSCS2PoDxgfMbcisnSgTlhCgkjcXakAbYz2TjNFWpbthuCabdFyJsaQx/1+HUWCRhVEqhYZlx76qcbZyFQ4D1m6/JUJ9rqWy8vLlCDUNt9W8ZW3MNegFaoHdoO7BhZIHP4oXErqytWK18k4gVVMqdAlLHuRX5gA6tgbeuI17Mv8ogPGAlGHPV+jUnhNlTYDX93bmtiCBqG63yA44iYCnx431UUJxlB9bfTV8bMkvzg5L7ZZFlGpl6ZFhib52Xs5+LiSl7n5Prc9EgSAmRBvGjCsUTDcXl2UyvRdERqv8SHYWBGYm22QwZtW2K5Es7YsWsletGXBSvZtW6ZWspO2zHcKEX43t/ON6DzbaWerpBQnbeaNaMVEN3yDBZegTmqyvNXcb/pZnp9OK1Hyl9z+HP/KSLHsiHoeg79aW1PrOmy0WhCYWRSdYypBXeZZkyqiuGj4PPFAFCP4WCpaJu8rilkSI7Z6N225r0nUObJkFc02pZNzPq2yMqSdt5h+iwhMkRWvaE8Lhz7lzOve8NjjmTNBPdYtIygYWXFoaK2qRsRp3k9DYQcFEkkZj9fw5kSsQB38RYNZ7uhFF/aqG3vVhV12Y5dd2Hk3dt6FVd1Y1WkvCN4NHxcL+QJUyL3GGroEi8rrIuZrfWeXtVUdKDgTN8BjfdcNlFgsLm+Qr8xtP5TGvA7WHd1wl0jcsVVrzX2PvQ3wcQNsHqbg6uOtxTFIRXeMm/DVRW/ZXOVd3dVKSLHSp0OC5+l6VWFlnYVUsk6DuI0GsU6DvI0GuU6Duo2GdllT0XB1Gw0/tjQwjmsVcUxEt/LjalEMrXi04vL+OVaAxXdzRdE6nQbwy7I/t4okubC/as9hkQisvFrQP3RiaQt3QTuBszZw1gX0SdvMIodpdAt+1cRe9ShtAYvk0WlrC7uw7GFVf4uCxRRA0+7z3W4H+zwVLexeP3bZxi77sE3TEdvtEW2DxKqAdRky7JtidRWrj95da4ZP0HtTO6H3z3fzvhH76HtV+l4n3Qyf9A6f3Gb4Pvpeld49vKH3+CuxHlgrsnHdtvUGXF0imZIJd7CgrdOLesfn4Ba1iAN4Fs0SA1x8kZ+6Z5YuyWxTjAGir0XNQkg7xajZfZ8avO6u1aVnaFTt3UaVue6tt67UKLpViluqbLnNnLf6jbyLCgt9d99rofGf0fdorT592S3Mw9a+vjw05h7o5qG+PFo/kDF7rSf+F7tFt+Hi/zIcw/c5j80xzCGicdicg8DO8sA5AxFbk9F+lBqBfr9e9u6YXjyBVu7yKqE4XPAUn5WWeeuFozCIA33e1K/BQtBnkMa0tcAMvb1h4cfWb6l4gayx6sdX7C/e3ZQs4nmKd4yV7YxHu/uYxUuc5tnzJCSx4hEWVimDbKJPx1XSCoypQVbHKipP/ezGI78oz0vfgMuwqNLdL8teXEusePC/R3qC0pNeqUdJkGfm2oM4Bl0MHkOf/IhTrJfMtQfhcqzc9aVHjiePPNOXHjkssNxU5u1j+d7BcbJneR/86XGu30r0SEM3z8KRPXRH3Ygv9EvDICL4eMVve6hb64A0XgGx1TOmAJZqFz5/3YdgPMDTN0Xbrlt9g7549SzP9KUPoEQEBK1SkQmhEzq7Mj8l2HEcY2Go305m49HBvhvlq35GliAkJNm01ukA050NsMOFV6DHo3r/QobUV9ht1BT9TFYGnd7gy34oHol6jLZI/8TR7sUpB7iPKoJr81udxZvo6ry0oDGviztbk+aPcO3Gm+loMh5NvhtvPTkcFJ+PB58Nfj+4N5gMDgZPBn8aHA1eD9wBG/x98I/BPzc/2ry/Od6cFtAPPyg5vxvUPptf/RfDxKQU</latexit> <latexit sha1_base64="wu6Hts1TOb3rsEaGlT7xgnbYqiA=">AAAcgXicpVltc9y2Eb4kfUnVN6f9GH1gqpFrZ06nu5Nkycl4JuPEk3bGrlVZctyKkgYklyTmQIICwPOdWPZH9Gv7x/pvugB5El/PmvQ04oHY51ksFovlguckjEo1Hv/3o48/+clPf/bzT3+x8ctf/fo3v33w2e/eSp4KF85czrh45xAJjMZwpqhi8C4RQCKHwQ/O7Fst/2EOQlIen6plAhcRCWLqU5co7HpnqxAUuaJXD7bGo7H5WO3GpGxsDcrP8dVnn7u2x900gli5jEh5Phkn6iIjQlGXQb5hpxIS4s5IAOfYjEkE8iIzBufWNvZ4ls8F/sfKMr1VRkYiKZeRg8iIqFA2ZbqzS3aeKv/oIqNxkiqI3WIgP2WW4paeveVRAa5iS2wQV1C01XJDIoir0Ee1UYxNw0Vh8MbGtmV8KdHWWOKy4LSt91SFVsK4QqYHPq6AQWceEbMdAV6eicDJs/HoaKh9qS+To/He0+nk4MnRk+nh/sEk72A6LIVb6viWeg9mIADiOrXKGT9FHUZfvrHdZnNB4mA18qSgP9k/HB8cHU33DqZP9yeTo5L9AXI54/0S3bV6Q0/qpR/qtuKcyVrEZJKmMVWLemcgSBJSt9EbpUxRwd8PHc5nijhyiJeUEbEY+owTVQ9FPeizmIuIMElv4CKTqePToDE6BnQI3tARZAZ1BZkPyzhKdkiqeF2z5EI9dHmE209ipMdEOdRByDFujteJ3m3ylB+XWsJlEkIs8ywVLK9qSTxfwWIYUk9v6Zkc6qvx87NKdAwtlyqodhdLP7RQX7VbR6FxTIR3kicQG4WKu88IYxfaDhAC/PocIU4j1B/h/jGbFEVip1hyz0LfMlD1zYIeb7gjI66Le0SuVNhhSFSdQ2c3dcpCYgs0wzSkRWPcblFEYq8YTlMYxVURS0w0uOZyaHnoBmGSmRzpSdI4wN5COoowuZnN+z3EIAgzSQD1KERt2DG8L9Vnto5BHRv5+eQC72ChpJttTfK8DsN2gunCRGKe2di2Y56g8Q4m3Znt0EDOaFLrizmNPXRFQxPGJ53rtShGDHERslCp5KvdXSMacRHsYjTvohGFQUrhpN/R+VfarIY23YCV9eiGAFMgEZktfZ9ElC1tidkuUTrkja5moipUVhylsy/uSqs+DI1yrV6FIspo0waP+v6d2GuKIcizDEb2MBjl/2zIKGaOjKIM2jK4TumcMD07nA+N4NoY+jeMj5hbEVk6UCcsIUEk7q5UgDZGe6eZIi3LdkNwzbZoORNjyON+v44iQaMKIlWLjEsP/VTjbGQqnIcsXf7GBHtdy/X1dUoQaptvq/jKW5hb0ArVA7vD3QILJA5/HC4ldeVqxetknMAqplToEpa9yq9MAHXsDT3xGvZ1ftUBY4Gow16uUSm8pkqbga8ebU1sQYNQPW4QHHEXgc9PmuqiBGOovjb66vhZkl+dXhbbLIuo1EvTIkOT/OKDHHxcyevcfF/aHgkCwEyINw0Y1igYbm+uSmX6rgiNM3wINlYE5mYbZPC2FbYr0awti1ayV21ZsJJ935apley0LfOdQoTfze18J7rMdtrZKinFSZt5J1ox0Q3fYcElqJOaLG8195t+lufn00qU/CW3v8C/MlIsO6Kex+Af1tbUug0brRYEZhZF55hKUJd51qSKKC4aPk88EMUIPpaKlsn7imKWxIit3k1b7msSdY4sWUWzTenkXE6rrAxply2m3yICU2TFK9rTwqHPOfO6Nzz2eOZMUI91ywgKRlYcGlqrqhFxmvfTUNhBgURSxuM1vDkRK1AHf9Fgljt60YW96cbedGGX3dhlF3bejZ13YVU3VnXaC4J3w8fFQr4CFXKvsYYuwaLytoj5Vt/ZZW1VBwrOxB3wRN91AyUWi8s75Btz2w+lMa+DdUc33CUSd2zVWnPfY28DfNIAm4cpuPp4a3EMUtEd4yZ8ddFbNld5V3e1ElKs9OmQ4Hm6XlVYWWchlazTIO6jQazTIO+jQa7ToO6joV3WVDTc3EfD31saGMe1ijgmonv5cbUohlY8WnF5/xwrwOK7uaJonU4D+GXZX1hFklzYX7fnsEgEVl4t6B87sbSFu6KdwFkbOOsC+qRtZpHDNLoFv2lib3qUtoBF8ui0tYVdWPawqr9FwWIKoGn35V63g32eihZ2vx+7bGOXfdim6Yjt9oi2QWJVwLoMGfZNsbqK1UfvnjXDJ+ijqZ3Qx5d7ed+IffT9Kn2/k26GT3qHT+4zfB99v0rvHt7Qe/yVWLvWimxct229BVeXSKZkwh0saOv0ot7zObhFLeIAnkWzxAAXX+bn7oWlSzLbFGOA6FtRsxDSTjFq9j6kBq97a3XpGRpV+/dRZa77660rNYpuleKeKltuM+etfiMfosJC38MPWmj8Z/Q9XatPX/YK87B1oC9PjLmHunmkL0/XD2TMXuuJH2O36DZc/F+GY/i+5LE5hjlENA6bcxDYWR44ZyBiazI6iFIj0O/Xy94d04sn0MpdXiUUhwue4rPSMm+9cBQGcaDPm/o1WAj6DNKYthaYobc3LPzY+i0VL5A1Vv34iv3Fu5uSRTxP8Y6xsp3xaO8As3iJ0zx7noQkVjzCwiplkE306bhKWoExNcjqWEXlqZ/deOQX5XnpO3AZFlW6+3XZi2uJFQ/+90hPUXraK/UoCfLMXHsQJ6CLwRPokx9zivWSufYgXI6Vu770yPHkkWf60iOHBZabyrx9LN87OE72Iu+DPz/J9VuJHmno5lk4sofuqBvxpX5pGEQEH6/4bQ91ax2QxisgtnrGFMBS7cKXZ30IxgM8fVO07bbVN+irNy/yTF/6AEpEQNAqFZkQOqWzG/NTgh3HMRaG+u1kNh4dHrhRvupnZAlCQpJNa50OMN3ZADtceAV6PKr3L2RIfYXdRk3Rz2Rl0OkdvuyH4pGox2iL9E8c7V6ccoD7qCK4Nb/VWbyJrs5LCxrzunqwNWn+CNduvJ2OJuPR5K/jrW+Oyh/oPh18PvjD4NFgMjgcfDP40+B4cDZwB2zwr8G/B//Z/GTz8eZ4c1pAP/6o5Px+UPtsfv0/lFOhdQ==</latexit> ✓j <latexit sha1_base64="I43qAb/N9+gEleDQ88LUjU6gBUM=">AAAcgXicpVltc9y2Eb4kfUnVNyf9aH1gqrFrZ07nu5NkS8l4xuPEk3bGrlVZctyIkgYklyR6IEEB4PlOLPsj+rX9Y/0b/QVdgDyJr2dNehrxQOzzLBaLxXLBcxJGpRqP//PRx5/85Kc/+/mnv9j45a9+/Zvf3vns87eSp8KFE5czLt45RAKjMZwoqhi8SwSQyGHwvTP7Rsu/n4OQlMfHapnAWUSCmPrUJQq73tkqBEUu/nZxZ2s8GpuP1W5MysbWs7v/fT7Az+HFZ3dd2+NuGkGsXEakPJ2ME3WWEaGoyyDfsFMJCXFnJIBTbMYkAnmWGYNz6x72eJbPBf7HyjK9VUZGIimXkYPIiKhQNmW6s0t2mip//yyjcZIqiN1iID9lluKWnr3lUQGuYktsEFdQtNVyQyKIq9BHtVGMTcNFYfDGxj3L+FKirbHEZcFpW++pCq2EcYVMD3xcAYPOPCJm2wK8PBOBk2fj0f5Q+1JfJvvjnYPpZO/x/uPpk929Sd7BdFgK19TxNfUWzEAAxHVqlTM+QB1GX75xr83mgsTBauRJQX+8+2S8t78/3dmbHuxOJvsl+wPkcsa7Jbpr9Yae1Es/1G3FOZO1iMkkTWOqFvXOQJAkpG6jN0qZooK/HzqczxRx5BAvKSNiMfQZJ6oeinrQpzEXEWGSXsFZJlPHp0FjdAzoELyhI8gM6goyH5ZxlGyTVPG6ZsmFuu/yCLefxEiPiXKog5BD3ByvE73b5DE/LLWEyySEWOZZKlhe1ZJ4voLFMKSe3tIzOdRX4+enlegYWi5VUO0uln5oob5qt45C45gI7yRPIDYKFXefEsbOtB0gBPj1OUKcRqg/wv1jNimKxHax5J6FvmWg6psFPd5wR0ZcF/eIXKmww5CoOofOruqUhcQWaIZpSIvGuN2iiMReMZymMIqrIpaYaHDN5dDy0A3CJDM50pOkcYC9hXQUYXIzm/c7iEEQZpIA6lGI2rBjeF+qz2wdgzo28tPJGd7BQkk325rkeR2G7QTThYnEPLOxbcc8QeMdTLoz26GBnNGk1hdzGnvoioYmjE8612tRjBjiImShUslXjx4Z0YiL4BFG8yM0ojBIKZz0Ozr/SpvV0KYbsLIe3RBgCiQis6Xvk4iypS0x2yVKh7zR1UxUhcqKo3T2xV1p1YehUa7Vq1BEGW3a4FHfvxF7TTEEeZbByB4Go/wfDRnFzJFRlEFbBpcpnROmZ4fzoRFcGkP/ivERcysiSwfqhCUkiMTdlQrQxmjvNFOkZdluCK7ZFi1nYgx53O/XUSRoVEGkapFx6aGfapyNTIXzkKXL35hgr2u5vLxMCUJt820VX3kLcw1aoXpgN7hrYIHE4Q/DpaSuXK14nYwTWMWUCl3Cslf5hQmgjr2hJ17Dvs4vOmAsEHXYyzUqhddUaTPw1YOtiS1oEKqHDYIjbiLw+VFTXZRgDNXXRl8dP0vyi+PzYptlEZV6aVpkaJJffJCDjyt5mZvvc9sjQQCYCfGmAcMaBcPtzUWpTN8VoXGCD8HGisDcbIMM3rbCdiWatWXRSvaqLQtWsu/aMrWSHbdlvlOI8Lu5nW9E59l2O1slpThpM29EKya64VssuAR1UpPlreZ+08/y/HRaiZI/5/YX+FdGimVH1PMY/N3amlrXYaPVgsDMougcUwnqMs+aVBHFRcPniQeiGMHHUtEyeV9RzJIYsdW7act9TaLOkSWraLYpnZzzaZWVIe28xfRbRGCKrHhFe1o49DlnXveGxx7PnAnqsW4ZQcHIikNDa1U1Ik7zfhoKOyiQSMp4vIY3J2IF6uAvGsxyRy+6sFfd2Ksu7LIbu+zCzrux8y6s6saqTntB8G74uFjIV6BC7jXW0CVYVF4XMd/oO7usrepAwZm4AR7pu26gxGJxeYN8Y277oTTmdbDu6Ia7ROKOrVpr7nvsbYCPGmDzMAVXH28tjkEqumPchK8uesvmKu/qrlZCipU+HRI8T9erCivrLKSSdRrEbTSIdRrkbTTIdRrUbTS0y5qKhqvbaPihpYFxXKuIYyK6lR9Xi2JoxaMVl/dPsQIsvpsritbpNIBflv2FVSTJhf11ew6LRGDl1YL+oRNLW7gL2gmctYGzLqBP2mYWOUyjW/CrJvaqR2kLWCSPTltb2IVlD6v6WxQspgCadp/vdDvY56loYXf7scs2dtmHbZqO2G6PaBskVgWsy5Bh3xSrq1h99O5YM3yCPpjaCX14vpP3jdhH363SdzvpZvikd/jkNsP30Xer9O7hDb3HX4n1yFqRjevuWW/B1SWSKZlwBwvaOr2o93wOblGLOIBn0SwxwMWX+al7ZumSzDbFGCD6WtQshLRTjJqdD6nB685aXXqGRtXubVSZ6+5660qNoluluKXKltvMeavfyPuosNB3/4MWGv8ZfQdr9enLTmEetvb05bEx94lu7uvLwfqBjNlrPfFj7Bbdhov/y3AM35c8Nscwh4jGYXMOAjvLA+cMRGxNRntRagT6/XrZu2168QRaucurhOJwwVN8VlrmrReOwiAO9HlTvwYLQZ9BGtPWAjP0vQ0LP7Z+S8ULZI1VP75if/HupmQRz1O8Y6xsezza2cMsXuI0z54nIYkVj7CwShlkE306rpJWYEwNsjpWUXnqZzce+UV5XvoWXIZFle5+XfbiWmLFg/890mOUHvdKPUqCPDPXHsQR6GLwCPrkh5xivWSuPQiXY+WuLz1yPHnkmb70yGGB5aYybx/L9w6Ok73I++DPj3L9VqJHGrp5Fo7soTvqRnypXxoGEcHHK37bQ91aB6TxCoitnjEFsFS78OVJH4LxAE/fFG27bvUN+urNizzTlz6AEhEQtEpFJoSO6ezK/JRgx3GMhaF+O5mNR0/23Chf9TOyBCEhyaa1TgeY7myAHS68Aj0e1fsXMqS+wm6jpuhnsjLo9AZf9kPxSNRjtEX6J452L045wH1UEVyb3+os3kRX56UFjXld3NmaNH+EazfeTkeT8Wjyl/HWs/1B8fl0cHfw+8GDwWTwZPBs8MfB4eBk4A7Y4J+Dfw3+vfnJ5sPN8ea0gH78Ucn53aD22fz6fzgqowU=</latexit> <latexit sha1_base64="caXfti+QmnIlgO/vw7RCZ7mPWrs=">AAAcgXicpVlfc9y2Eb8kbZMq/eMkj9YDU41dO3M6350kS07GMx4nnrQzdq3KsuNWlDQguSTRAwkKAM93YtlP0Ke+tl+sX6PPfegC5En8e9akpxEPxP5+i8VisVzwnIRRqcbjf3/w4Uc/+enPPv7k5xuf/uKXv/r1rc8+fyN5Klx47XLGxVuHSGA0hteKKgZvEwEkchj84My+1fIf5iAk5fGxWiZwGpEgpj51icKut7YKQZHzv5zf2hqPxuZjtRuTsrH15PZ/nn786d//e3j+2W3X9ribRhArlxEpTybjRJ1mRCjqMsg37FRCQtwZCeAEmzGJQJ5mxuDcuoM9nuVzgf+xskxvlZGRSMpl5CAyIiqUTZnu7JKdpMo/OM1onKQKYrcYyE+ZpbilZ295VICr2BIbxBUUbbXckAjiKvRRbRRj03BRGLyxcccyvpRoayxxWXDa1juqQithXCHTAx9XwKAzj4jZtgAvz0Tg5Nl4dDDUvtSXycF459F0svfw4OF0f3dvkncwHZbCFXV8Rb0BMxAAcZ1a5YwfoQ6jL9+402ZzQeJgNfKkoD/c3R/vHRxMd/amj3Ynk4OS/R5yOePdEt21ekNP6qUf6rbinMlaxGSSpjFVi3pnIEgSUrfRG6VMUcHfDR3OZ4o4coiXlBGxGPqME1UPRT3o45iLiDBJL+E0k6nj06AxOgZ0CN7QEWQGdQWZD8s4SrZJqnhds+RC3XV5hNtPYqTHRDnUQcghbo6Xid5t8pgfllrCZRJCLPMsFSyvakk8X8FiGFJPb+mZHOqr8fPjSnQMLZcqqHYXSz+0UF+1W0ehcUyEd5InEBuFiruPCWOn2g4QAvz6HCFOI9Qf4f4xmxRFYrtYcs9C3zJQ9c2CHm+4IyOui3tErlTYYUhUnUNnl3XKQmILNMM0pEVj3G5RRGKvGE5TGMVVEUtMNLjmcmh56AZhkpkc6UnSOMDeQjqKMLmZzfs9xCAIM0kA9ShEbdgxvCvVZ7aOQR0b+cnkFO9goaSbbU3yvA7DdoLpwkRintnYtmOeoPEOJt2Z7dBAzmhS64s5jT10RUMTxied67UoRgxxEbJQqeTrBw+MaMRF8ACj+QEaURikFE76LZ1/rc1qaNMNWFmPbggwBRKR2dL3SUTZ0paY7RKlQ97oaiaqQmXFUTr74q606sPQKNfqVSiijDZt8KjvX4u9phiCPMtgZA+DUf63hoxi5sgoyqAtg4uUzgnTs8P50AgujKF/wviIuRWRpQN1whISROLuSgVoY7R3minSsmw3BNdsi5YzMYY87vfrKBI0qiBStci49NBPNc5GpsJ5yNLlr0yw17VcXFykBKG2+baKr7yFuQKtUD2wa9wVsEDi8IfhUlJXrla8TsYJrGJKhS5h2Yv83ARQx97QE69hX+bnHTAWiDrs+RqVwmuqtBn46t7WxBY0CNX9BsER1xH49KipLkowhupro6+OnyX5+fFZsc2yiEq9NC0yNMnP3svBx5W8yM33me2RIADMhHjTgGGNguH26rxUpu+K0HiND8HGisDcbIMM3rTCdiWatWXRSvaiLQtWsu/bMrWSHbdlvlOI8Lu5na9FZ9l2O1slpThpM69FKya64TssuAR1UpPlreZ+08/y/GRaiZI/5PaX+FdGimVH1PMY/NXamlpXYaPVgsDMougcUwnqMs+aVBHFRcPniQeiGMHHUtEyeV9RzJIYsdW7act9TaLOkSWraLYpnZyzaZWVIe2sxfRbRGCKrHhFe1o49ClnXveGxx7PnAnqsW4ZQcHIikNDa1U1Ik7zfhoKOyiQSMp4vIY3J2IF6uAvGsxyRy+6sJfd2Msu7LIbu+zCzrux8y6s6saqTntB8G74uFjIF6BC7jXW0CVYVF4VMd/qO7usrepAwZm4Bh7pu26gxGJxeY18ZW77oTTmdbDu6Ia7ROKOrVpr7nvsbYCPGmDzMAVXH28tjkEqumPchK8uesvmKu/qrlZCipU+HRI8T9erCivrLKSSdRrETTSIdRrkTTTIdRrUTTS0y5qKhsubaPhzSwPjuFYRx0R0Iz+uFsXQikcrLu/vYwVYfDdXFK3TaQC/LPtLq0iSC/ub9hwWicDKqwX9bSeWtnDntBM4awNnXUCftM0scphGt+CXTexlj9IWsEgenba2sAvLHlb1tyhYTAE07T7b6Xawz1PRwu72Y5dt7LIP2zQdsd0e0TZIrApYlyHDvilWV7H66N2xZvgEvTe1E3r/bCfvG7GPvlul73bSzfBJ7/DJTYbvo+9W6d3DG3qPvxLrgbUiG9fdsd6Aq0skUzLhDha0dXpR7/gc3KIWcQDPolligIuv8hP31NIlmW2KMUD0lahZCGmnGDU771OD1521uvQMjardm6gy19311pUaRbdKcUOVLbeZ81a/kXdRYaHv7nstNP4z+h6t1acvO4V52NrTl4fG3H3dPNCXR+sHMmav9cSPsVt0Gy7+L8MxfJ/z2BzDHCIah805COwsD5wzELE1Ge1FqRHo9+tl77bpxRNo5S6vEorDBU/xWWmZt144CoM40OdN/RosBH0GaUxbC8zQdzYs/Nj6LRUvkDVW/fiK/cW7m5JFPE/xjrGy7fFoZw+zeInTPHuehCRWPMLCKmWQTfTpuEpagTE1yOpYReWpn9145Bfleek7cBkWVbr7ZdmLa4kVD/73SI9Retwr9SgJ8sxcexBHoIvBI+iTH3KK9ZK59iBcjpW7vvTI8eSRZ/rSI4cFlpvKvH0s3zs4TvYs74M/Pcr1W4keaejmWTiyh+6oG/GVfmkYRAQfr/htD3VrHZDGKyC2esYUwFLtwuev+xCMB3j6pmjbVatv0BevnuWZvvQBlIiAoFUqMiF0TGeX5qcEO45jLAz128lsPNrfc6N81c/IEoSEJJvWOh1gurMBdrjwCvR4VO9fyJD6CruNmqKfycqg02t82Q/FI1GP0RbpnzjavTjlAPdRRXBlfquzeBNdnZcWNOZ1fmtr0vwRrt14Mx1NxqPJH8dbTw4GxeeTwe3Bbwb3BpPB/uDJ4HeDw8HrgTtgg38M/jn41+ZHm/c3x5vTAvrhByXni0Hts/nN/wDra6Sf</latexit> <latexit sha1_base64="caXfti+QmnIlgO/vw7RCZ7mPWrs=">AAAcgXicpVlfc9y2Eb8kbZMq/eMkj9YDU41dO3M6350kS07GMx4nnrQzdq3KsuNWlDQguSTRAwkKAM93YtlP0Ke+tl+sX6PPfegC5En8e9akpxEPxP5+i8VisVzwnIRRqcbjf3/w4Uc/+enPPv7k5xuf/uKXv/r1rc8+fyN5Klx47XLGxVuHSGA0hteKKgZvEwEkchj84My+1fIf5iAk5fGxWiZwGpEgpj51icKut7YKQZHzv5zf2hqPxuZjtRuTsrH15PZ/nn786d//e3j+2W3X9ribRhArlxEpTybjRJ1mRCjqMsg37FRCQtwZCeAEmzGJQJ5mxuDcuoM9nuVzgf+xskxvlZGRSMpl5CAyIiqUTZnu7JKdpMo/OM1onKQKYrcYyE+ZpbilZ295VICr2BIbxBUUbbXckAjiKvRRbRRj03BRGLyxcccyvpRoayxxWXDa1juqQithXCHTAx9XwKAzj4jZtgAvz0Tg5Nl4dDDUvtSXycF459F0svfw4OF0f3dvkncwHZbCFXV8Rb0BMxAAcZ1a5YwfoQ6jL9+402ZzQeJgNfKkoD/c3R/vHRxMd/amj3Ynk4OS/R5yOePdEt21ekNP6qUf6rbinMlaxGSSpjFVi3pnIEgSUrfRG6VMUcHfDR3OZ4o4coiXlBGxGPqME1UPRT3o45iLiDBJL+E0k6nj06AxOgZ0CN7QEWQGdQWZD8s4SrZJqnhds+RC3XV5hNtPYqTHRDnUQcghbo6Xid5t8pgfllrCZRJCLPMsFSyvakk8X8FiGFJPb+mZHOqr8fPjSnQMLZcqqHYXSz+0UF+1W0ehcUyEd5InEBuFiruPCWOn2g4QAvz6HCFOI9Qf4f4xmxRFYrtYcs9C3zJQ9c2CHm+4IyOui3tErlTYYUhUnUNnl3XKQmILNMM0pEVj3G5RRGKvGE5TGMVVEUtMNLjmcmh56AZhkpkc6UnSOMDeQjqKMLmZzfs9xCAIM0kA9ShEbdgxvCvVZ7aOQR0b+cnkFO9goaSbbU3yvA7DdoLpwkRintnYtmOeoPEOJt2Z7dBAzmhS64s5jT10RUMTxied67UoRgxxEbJQqeTrBw+MaMRF8ACj+QEaURikFE76LZ1/rc1qaNMNWFmPbggwBRKR2dL3SUTZ0paY7RKlQ97oaiaqQmXFUTr74q606sPQKNfqVSiijDZt8KjvX4u9phiCPMtgZA+DUf63hoxi5sgoyqAtg4uUzgnTs8P50AgujKF/wviIuRWRpQN1whISROLuSgVoY7R3minSsmw3BNdsi5YzMYY87vfrKBI0qiBStci49NBPNc5GpsJ5yNLlr0yw17VcXFykBKG2+baKr7yFuQKtUD2wa9wVsEDi8IfhUlJXrla8TsYJrGJKhS5h2Yv83ARQx97QE69hX+bnHTAWiDrs+RqVwmuqtBn46t7WxBY0CNX9BsER1xH49KipLkowhupro6+OnyX5+fFZsc2yiEq9NC0yNMnP3svBx5W8yM33me2RIADMhHjTgGGNguH26rxUpu+K0HiND8HGisDcbIMM3rTCdiWatWXRSvaiLQtWsu/bMrWSHbdlvlOI8Lu5na9FZ9l2O1slpThpM69FKya64TssuAR1UpPlreZ+08/y/GRaiZI/5PaX+FdGimVH1PMY/NXamlpXYaPVgsDMougcUwnqMs+aVBHFRcPniQeiGMHHUtEyeV9RzJIYsdW7act9TaLOkSWraLYpnZyzaZWVIe2sxfRbRGCKrHhFe1o49ClnXveGxx7PnAnqsW4ZQcHIikNDa1U1Ik7zfhoKOyiQSMp4vIY3J2IF6uAvGsxyRy+6sJfd2Msu7LIbu+zCzrux8y6s6saqTntB8G74uFjIF6BC7jXW0CVYVF4VMd/qO7usrepAwZm4Bh7pu26gxGJxeY18ZW77oTTmdbDu6Ia7ROKOrVpr7nvsbYCPGmDzMAVXH28tjkEqumPchK8uesvmKu/qrlZCipU+HRI8T9erCivrLKSSdRrETTSIdRrkTTTIdRrUTTS0y5qKhsubaPhzSwPjuFYRx0R0Iz+uFsXQikcrLu/vYwVYfDdXFK3TaQC/LPtLq0iSC/ub9hwWicDKqwX9bSeWtnDntBM4awNnXUCftM0scphGt+CXTexlj9IWsEgenba2sAvLHlb1tyhYTAE07T7b6Xawz1PRwu72Y5dt7LIP2zQdsd0e0TZIrApYlyHDvilWV7H66N2xZvgEvTe1E3r/bCfvG7GPvlul73bSzfBJ7/DJTYbvo+9W6d3DG3qPvxLrgbUiG9fdsd6Aq0skUzLhDha0dXpR7/gc3KIWcQDPolligIuv8hP31NIlmW2KMUD0lahZCGmnGDU771OD1521uvQMjardm6gy19311pUaRbdKcUOVLbeZ81a/kXdRYaHv7nstNP4z+h6t1acvO4V52NrTl4fG3H3dPNCXR+sHMmav9cSPsVt0Gy7+L8MxfJ/z2BzDHCIah805COwsD5wzELE1Ge1FqRHo9+tl77bpxRNo5S6vEorDBU/xWWmZt144CoM40OdN/RosBH0GaUxbC8zQdzYs/Nj6LRUvkDVW/fiK/cW7m5JFPE/xjrGy7fFoZw+zeInTPHuehCRWPMLCKmWQTfTpuEpagTE1yOpYReWpn9145Bfleek7cBkWVbr7ZdmLa4kVD/73SI9Retwr9SgJ8sxcexBHoIvBI+iTH3KK9ZK59iBcjpW7vvTI8eSRZ/rSI4cFlpvKvH0s3zs4TvYs74M/Pcr1W4keaejmWTiyh+6oG/GVfmkYRAQfr/htD3VrHZDGKyC2esYUwFLtwuev+xCMB3j6pmjbVatv0BevnuWZvvQBlIiAoFUqMiF0TGeX5qcEO45jLAz128lsPNrfc6N81c/IEoSEJJvWOh1gurMBdrjwCvR4VO9fyJD6CruNmqKfycqg02t82Q/FI1GP0RbpnzjavTjlAPdRRXBlfquzeBNdnZcWNOZ1fmtr0vwRrt14Mx1NxqPJH8dbTw4GxeeTwe3Bbwb3BpPB/uDJ4HeDw8HrgTtgg38M/jn41+ZHm/c3x5vTAvrhByXni0Hts/nN/wDra6Sf</latexit> <latexit sha1_base64="isTL59a2OifKddQT14KzRD58m1M=">AAAcgXicpVltc9y2Eb4kfUnVN6f9GH1gqpFrZ06nu5Nkycl4JuPEk3bGrlVZctyKkgYklyR6IEEB4PlOLPsj+rX9Y/03XYA8ia9nTXsa8UDs8ywWi8VywXMSRqUaj//z0cef/OjHP/nppz/b+PkvfvmrXz/47DdvJU+FC2cuZ1y8c4gERmM4U1QxeJcIIJHD4Adn9q2W/zAHISmPT9UygYuIBDH1qUsUdr2zVQiKXP3t6sHWeDQ2H6vdmJSNrUH5Ob767HPX9ribRhArlxEpzyfjRF1kRCjqMsg37FRCQtwZCeAcmzGJQF5kxuDc2sYez/K5wP9YWaa3yshIJOUychAZERXKpkx3dsnOU+UfXWQ0TlIFsVsM5KfMUtzSs7c8KsBVbIkN4gqKtlpuSARxFfqoNoqxabgoDN7Y2LaMLyXaGktcFpy29Z6q0EoYV8j0wMcVMOjMI2K2I8DLMxE4eTYeHQ21L/VlcjTeezqdHDw5ejI93D+Y5B1Mh6VwSx3fUu/BDARAXKdWOeOnqMPoyze222wuSBysRp4U9Cf7h+ODo6Pp3sH06f5kclSyP0AuZ7xfortWb+hJvfRD3VacM1mLmEzSNKZqUe8MBElC6jZ6o5QpKvj7ocP5TBFHDvGSMiIWQ59xouqhqAd9FnMRESbpDVxkMnV8GjRGx4AOwRs6gsygriDzYRlHyQ5JFa9rllyohy6PcPtJjPSYKIc6CDnGzfE60btNnvLjUku4TEKIZZ6lguVVLYnnK1gMQ+rpLT2TQ301fn5WiY6h5VIF1e5i6YcW6qt26yg0jonwTvIEYqNQcfcZYexC2wFCgF+fI8RphPoj3D9mk6JI7BRL7lnoWwaqvlnQ4w13ZMR1cY/IlQo7DImqc+jspk5ZSGyBZpiGtGiM2y2KSOwVw2kKo7gqYomJBtdcDi0P3SBMMpMjPUkaB9hbSEcRJjezeb+HGARhJgmgHoWoDTuG96X6zNYxqGMjP59c4B0slHSzrUme12HYTjBdmEjMMxvbdswTNN7BpDuzHRrIGU1qfTGnsYeuaGjC+KRzvRbFiCEuQhYqlXy1u2tEIy6CXYzmXTSiMEgpnPQ7Ov9Km9XQphuwsh7dEGAKJCKzpe+TiLKlLTHbJUqHvNHVTFSFyoqjdPbFXWnVh6FRrtWrUEQZbdrgUd+/E3tNMQR5lsHIHgaj/B8NGcXMkVGUQVsG1ymdE6Znh/OhEVwbQ/+C8RFzKyJLB+qEJSSIxN2VCtDGaO80U6Rl2W4IrtkWLWdiDHnc79dRJGhUQaRqkXHpoZ9qnI1MhfOQpcvfmGCva7m+vk4JQm3zbRVfeQtzC1qhemB3uFtggcThj8OlpK5crXidjBNYxZQKXcKyV/mVCaCOvaEnXsO+zq86YCwQddjLNSqF11RpM/DVo62JLWgQqscNgiPuIvD5SVNdlGAM1ddGXx0/S/Kr08tim2URlXppWmRokl98kIOPK3mdm+9L2yNBAJgJ8aYBwxoFw+3NValM3xWhcYYPwcaKwNxsgwzetsJ2JZq1ZdFK9qotC1ay79sytZKdtmW+U4jwu7md70SX2U47WyWlOGkz70QrJrrhOyy4BHVSk+Wt5n7Tz/L8fFqJkj/l9hf4V0aKZUfU8xj83dqaWrdho9WCwMyi6BxTCeoyz5pUEcVFw+eJB6IYwcdS0TJ5X1HMkhix1btpy31Nos6RJatotimdnMtplZUh7bLF9FtEYIqseEV7Wjj0OWde94bHHs+cCeqxbhlBwciKQ0NrVTUiTvN+Ggo7KJBIyni8hjcnYgXq4C8azHJHL7qwN93Ymy7sshu77MLOu7HzLqzqxqpOe0Hwbvi4WMhXoELuNdbQJVhU3hYx3+o7u6yt6kDBmbgDnui7bqDEYnF5h3xjbvuhNOZ1sO7ohrtE4o6tWmvue+xtgE8aYPMwBVcfby2OQSq6Y9yEry56y+Yq7+quVkKKlT4dEjxP16sKK+sspJJ1GsR9NIh1GuR9NMh1GtR9NLTLmoqGm/to+GtLA+O4VhHHRHQvP64WxdCKRysu7x9jBVh8N1cUrdNpAL8s+wurSJIL++v2HBaJwMqrBf19J5a2cFe0EzhrA2ddQJ+0zSxymEa34DdN7E2P0hawSB6dtrawC8seVvW3KFhMATTtvtzrdrDPU9HC7vdjl23ssg/bNB2x3R7RNkisCliXIcO+KVZXsfro3bNm+AR9NLUT+vhyL+8bsY++X6Xvd9LN8Env8Ml9hu+j71fp3cMbeo+/EmvXWpGN67att+DqEsmUTLiDBW2dXtR7Pge3qEUcwLNolhjg4sv83L2wdElmm2IMEH0rahZC2ilGzd6H1OB1b60uPUOjav8+qsx1f711pUbRrVLcU2XLbea81W/kQ1RY6Hv4QQuN/4y+p2v16cteYR62DvTliTH3UDeP9OXp+oGM2Ws98b/YLboNF/+X4Ri+L3lsjmEOEY3D5hwEdpYHzhmI2JqMDqLUCPT79bJ3x/TiCbRyl1cJxeGCp/istMxbLxyFQRzo86Z+DRaCPoM0pq0FZujtDQs/tn5LxQtkjVU/vmJ/8e6mZBHPU7xjrGxnPNo7wCxe4jTPnichiRWPsLBKGWQTfTquklZgTA2yOlZReepnNx75RXle+g5chkWV7n5d9uJaYsWD/z3SU5Se9ko9SoI8M9cexAnoYvAE+uTHnGK9ZK49CJdj5a4vPXI8eeSZvvTIYYHlpjJvH8v3Do6Tvcj74M9Pcv1WokcaunkWjuyhO+pGfKlfGgYRwccrfttD3VoHpPEKiK2eMQWwVLvw5VkfgvEAT98Ubbtt9Q366s2LPNOXPoASERC0SkUmhE7p7Mb8lGDHcYyFoX47mY1HhwdulK/6GVmCkJBk01qnA0x3NsAOF16BHo/q/QsZUl9ht1FT9DNZGXR6hy/7oXgk6jHaIv0TR7sXpxzgPqoIbs1vdRZvoqvz0oLGvK4ebE2aP8K1G2+no8l4NPnzeOubo/IHuk8Hnw9+N3g0mAwOB98M/jA4HpwN3AEb/HPwr8G/Nz/ZfLw53pwW0I8/Kjm/HdQ+m1//F7BpoXY=</latexit> parameter latent observable augmented data approximate likelihood ratio Figure 2 A schematic of machine learning based approaches to likelihood-free inference in which the simulation provides training data for a neural network that is subsequently used as a surrogate for the intractable likelihood during inference. Reproduced from (Brehmer et al., 2018b). techniques (Brehmer et al., 2018c). In addition, an inference compilation technique has been applied to inference of a tau-lepton decay. This proof-of-concept effort required developing probabilistic programming protocol that can be integrated into exist- ing domain-specific simulation codes such as SHERPA and GEANT4 (Baydin et al., 2018; Casado et al., 2017). This approach provides Bayesian inference on the latent vari- ables p(Z|X = x) and deep interpretability as the pos- the Hubble parameter evolution from type Ia supernova measurements. These experiences motivated the devel- opment of tools such as CosmoABC to streamline the ap- plication of the methodology in cosmological applica- tions (Ishida et al., 2015). More recently, likelihood-free inference methods based on machine learning have also been developed motivated by the experiences in cosmology. To confront the chal- lenges of ABC for high-dimensional observations X, a Brehmer+ 1805.00013
an exponentially tiny fraction of all possible inputs, the laws of physics are such that the data sets we care about for machine learning are also drawn from an exponentially tiny fraction of all imaginable data sets…” “Why does deep and cheap learning work so well?” Lin, Tegmark, Rolnick arXiv:1608.08225 (2017)
Euler,…) • High-energy physics: “QCD-Aware Recursive NN for Jet Physics” • Quantum Chemistry: “Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks” • Louppe+ 1702.00748 Jaderberg+1506.02025; Handa+1607.07405 Pfau+ 1909.02487 Impart/impose/imbue physical constraints into architecture Euclidean Neural Networks rotation-, translation-, & permutation- equivariant convolutional neural networks for 3D point clouds for emulating ab initio calculations & generating atomic geometries Tess Smidt 2018 Alvarez Postdoctoral Fellow in Computing Sciences cf. "Machine learning and the physical sciences” Carleo+ 1903.10563
Euler,…) • High-energy physics: “QCD-Aware Recursive NN for Jet Physics” • Quantum Chemistry: “Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks” • Louppe+ 1702.00748 Jaderberg+1506.02025; Handa+1607.07405 Pfau+ 1909.02487 Impart/impose/imbue physical constraints into architecture Euclidean Neural Networks rotation-, translation-, & permutation- equivariant convolutional neural networks for 3D point clouds for emulating ab initio calculations & generating atomic geometries Tess Smidt 2018 Alvarez Postdoctoral Fellow in Computing Sciences Challenge: Find data embeddings & network architectures that conform to known taxonomies, conservation laws, & symmetries cf. "Machine learning and the physical sciences” Carleo+ 1903.10563
raw data to features & embed following our understanding of the physical system Baking Physical Constraints into the Entire Learning Process ɡ Symmetry preserving layers ɢ Bottlenecks & Model Capacity Sparsity imposition ɣ Loss Function Curation Enforce physically meaningful instance-level predictions ɤ Distributional Loss Enforce ensemble-level predictions conform to expectations
Comparison of summary statistics between N-body and GAN simulations, for box size of 500 Mpc. The statistics are: mass density histogram (upper left), peak count (upper right), power spectrum of 2D images (lower left) and cross power spectrum (lower right). The cross power spectrum is calculated between pairs N-body images (blue points), between pairs of GAN images (red points), and between pairs consisting of one GAN and one N-body image (cyan points). The power spectra are shown in units of h 1 Mpc, where h = H0/100 corresponds to the Hubble parameter. The standard errors on the mean of the shown with a shaded region, and are too small to be seen for the first three panels. Rodriguez+ 1801.08070 Enabling Dark Energy Science with Deep Generative Models of Galaxy Images Ravanbaksh+16098.05769 5 . 7: Comparison of a C-VAE sample before and after adding noise a real COSMOS image with corresponding size, magnitude and shift. conditional models with increasing resolution in Denton al. (2015). In these conditional models, the generator : Z ⇥Y ! X and the discriminator D : X ⇥Y ! [0, 1], (a) Galaxy sizes (b) Galaxy brightness Fig. 8: Comparison of galaxy sizes and brightness between real COSMOS images and C-VAE samples. Colors indicate the value of the relevant variable used to condition the generated images (half-light radius for size and magnitude for brightness) accuracy and therefore the dynamics of this adversarial setting does not allow this mode of failure. Supernova (Thomas/Nugent); Exoplanets (Ford+11) Generative & Surrogate Modeling "Surrogate models for precessing binary black hole simulations with unequal masse” Varma+ 1905.09300 Idea: expensive simulations build on a coarse grid of input parameters are used to train a surrogate model to interpolate across parameter space Example: Numerical Relativity calculations of black hole merger waveforms
(https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/) The Darker Side of that Same Coin… → reproducibility crisis ‣Carbon footprint "Energy and Policy Considerations for Deep Learning in NLP” Strubell+ 1906.02243
at the scale ‣Novel questions pushing the envelope on computationally: prediction speed, memory consumption, etc. ‣Opportunity to Accelerate Learning (with less) on Physical Systems w/ Physics-based constraints ‣Growing symbiosis: first-principles simulations ⟷ generative/surrogate/likelihood-free inference ‣Access to greater compute aids in replicability & optimization, but at a cost